Гистология с основами эмбриологии
Гистология, классификация и морфология тканей. Общая эмбриология, развитие и строение половых клеток; внутриутробное развитие плода от момента оплодотворения до рождения. Сердечно-сосудистая, пищеварительная, дыхательная, эндокринная, нервная системы.
Рубрика | Биология и естествознание |
Вид | курс лекций |
Язык | русский |
Дата добавления | 13.12.2018 |
Размер файла | 241,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.Allbest.Ru/
Размещено на http://www.Allbest.Ru/
Размещено на http://www.Allbest.Ru/
УО «Гродненский государственный аграрный университет»
Ветеринарный факультет
Кафедра анатомии животных
Курс лекций
по дисциплине: «Частная и общая эмбриология» для студентов ветеринарного факультета специальности 1-740302 «Ветеринарная медицина» очной и заочной формы обучения
Подготовила:
Старший преподаватель
Г.В. Дорофей
Гродно 2011
Содержание
1. Цитология
2. Эмбриология
3. Эпителиальные ткани
4. Опорно-трофические ткани
5. Соединительные ткани
6. Скелетные ткани
7. Мышечные ткани
8. Нервная ткань
9. Сердечно-сосудистая система
10. Пищеварительная система
11. Дыхательная система
12. Выделительная система
13. Кожа и её производные
14. Половая система
15 . Эндокринная система
16. Нервная система
18. Органы чувств
Тема 1. Основы цитологии
План
1. Значение гистологии и ее задачи
2. История создания и основные положения клеточной теории
3. Органоиды и включения
4. Ядро
5. Химический состав клетки
1. Значение гистологии и ее задачи
Гистология - наука о строении тканей организма на микроскопическом уровне. Histos в переводе с греческого - ткань, а logos - учение. Развитие этой науки стало возможным с изобретением микроскопа. Во второй половине XVII века, благодаря усовершенствованию микроскопа и техники изготовления срезов, удалось заглянуть в тонкое строение тканей. Каждое исследование различных органов и тканей животных было открытием. Микроскопирование в биологии используется уже более 300 лет.
С помощью гистологии разрабатываются не только фундаментальные проблемы, но и решаются прикладные задачи, важные для ветеринарии и зоотехнии. Большое влияние на рост, развитие и формирование продуктивных качеств животных оказывает состояние их здоровья. Болезни приводят к морфологическим и функциональным изменениям в клетках, тканях и органах. Познание этих изменений необходимо для установления причины заболевания животных и успешного их лечения. Поэтому гистология тесно связана с патанатомией и широко используется в диагностике заболеваний. Курс гистологии включает:
Цитологию - учение о структуре и функциях клетки и эмбриологию - учение о формировании и развитии тканей и органов в эмбриональный период (от оплодотворенной яйцеклетки до рождения или вылупления из яйца).
Мы начинаем с цитологии.
Клетка - элементарная структурная единица организма, составляющая основу его жизнедеятельности. Она обладает всеми признаками живого: раздражимостью, возбудимостью, сократимостью, обменом веществ и энергии, способностью к размножению, хранением генетической информации и передачей ее поколениям.
С помощью электронного микроскопа изучена тончайшая структура клеток, а использование гистохимических методов позволило определить функциональное значение структурных единиц.
2. История создания и основные положения клеточной теории
Клеточная теория
Термин «клетка» впервые был применен Робертом Гуком в 1665 году, обнаружившем под микроскопом клеточное строение у растений. Но значительно позднее, уже в XIX век была разработана клеточная теория. Клеточное строение растений и животных изучали многие ученые, но они не обратили внимания на общность их структурной организации.
Честь создания клеточной теории принадлежит немецкому ученому Шванну (1838-39 гг.). Анализируя свои наблюдения клеток животных и сопоставляя с аналогичными исследованиями растительных тканей, проводимых Шлейденом, он пришел к выводу, что в основе строения как растительных, таки животных организмов лежат клетки. Важную роль в развитии клеточной теории Шванна имели труды Вирхова и других ученых.
Клеточная теория в ее современном виде включает следующие положения:
1. Клетка - это наименьшая единица живого, из которой строятся органы и ткани.
2. Клетки различных органов различных организмов гомологичны по своему строению, т.е. имеют общий принцип строения: содержат цитоплазму, ядро, основные органеллы.
3. Размножение клеток происходит только путем деления исходной клетки.
4. Клетки - как части целого организма специализированы: имеют определенную структуру, выполняют определенные функции и взаимосвязаны в функциональных системах тканей, органов и системах органов.
К числу неклеточных структур относят симпласты и синцитий. Они возникают либо от слияния клеток, либо в результате деления ядра без последующего разделения цитоплазмы. Примером симпластов являются мышечные волокна, примером синцития - сперматогонии - первичные половые клетки, соединенные перемычками.
Таким образом, многоклеточный организм животного представляет собой сложный ансамбль клеток, объединенных в систему тканей и органов, и связанных между собой межклеточным веществом.
Морфология клетки
Формы и размеры клеток разнообразны и определяются выполняемой функцией. Встречаются клетки округлые или овальные (клетки крови); веретеновидные (гладкая мышечная ткань); плоские, кубические, цилиндрические (эпителий); отросчатые (нервная ткань), что позволяет на расстоянии проводить импульсы.
Размеры клеток колеблются от 5 до 30 мкм; яйцеклетки у млекопитающих достигают 150-200 мкм.
Межклеточное вещество представляет собой продукт жизнедеятельности клеток и состоит из основного аморфного вещества и волокон.
Несмотря на различное строение и функции, все клетки имеют общие признаки и составные части. Компоненты клетки можно представить такой схемой:
Клетка
цитоплазма ядро плазмолемма
гиалоплазма органеллы включения
мембранные немембранные
Плазмолемма - поверхностный аппарат клетки, осуществляет регуляцию взаимоотношений клетки с окружающей средой и участвует в межклеточных взаимодействиях. Плазмолемма выполняет несколько важных функций:
1. Разграничительную (ограничивает клетку и обеспечивает связь с окружающей средой).
2. Транспортную - осуществляет: а) пассивный перенос путем диффузии и осмоса воды, ионов и низкомолекулярных веществ.
б) активный перенос веществ - ионов Na с затратой энергии.
в) эндоцитоз (фагоцитоз) - твердые вещества; жидкие - пиноцитоз.
3. Рецепторную - в плазмолемме имеются структуры для спецефического узнавания веществ (гормонов, лекарств и др.)
Плазмолемма построена по принципу биологических мембран. Имеет двухслойную липидную основу (билипидный слой), в которую погружены белки. Липиды представлены фосфолипидами и холестерином. Белки к билипидному слою прочно не фиксируются и плавают подобно айсбергам. Белки, пронизывающие два слоя липидов, называются интеральными, доходящие до половины бислоя - полуинтегральными, лежащие на поверхности - поверхностными или периферическими. Интегральные и полуинтегральные белки стабилизируют мембрану (структурные) и формируют транспортные пути. С поверхностными белками связаны цепи полисахаридов, образуя надмембранный слой (гликокаликс). Этот слой участвует в ферментном расщеплении различных соединений и взаимодействует с окружающей средой.
Со стороны цитоплазмы имеется субмембранный комплекс, являющийся опорно-сократительным аппаратом. В этой зоне обнаруживаются многочисленные микрофиламенты и микротрубочки. Все части плазмолеммы взаимосвязаны и работают как единая система.
В некоторых клетках для интенсификации транспортных процессов в определенных участках формируются многочисленные ворсинки, а для перемещения различных веществ (пылинок, микробов) появляются реснички.
Клеточные оболочки формируют межклеточные контакты. Основными формами контактов являются:
1. Простой контакт (клетки соприкасаются надмембранными слоями).
2. Плотный (замыкающий контакт), когда внешние слои плазмолеммы двух клеток сливаются в одну общую структуру и изолирует межклеточное пространство от внешней среды, и оно становится непроницаемым для макромолекул и ионов.
Разновидностью плотного контакта являются пальцевидные соединения и десмосомы. В межклеточном пространстве формируется центральная пластинка, которая связана с оболочками контактирующих клеток системой поперечных фибрилл. Со стороны подмембранного слоя десмосомы укрепляются компонентами цистоскелета. В зависимости от протяженности различают точечные и опоясывающие десмосомы.
3. Щелевидные контакты (межклеточное пространство очень узкое и между цитоплазмами клеток, пронизывая плазмолеммы, формируются каналы, по которым осуществляется движение ионов из одной клетки в другую.
На этом основана работа электрических синапсов в нервной ткани.
Такой тип соединения встречается во всех группах тканей.
Цитоплазма
Цитоплазма состоит из основного вещества гиалоплазмы и находящихся в ней структурных компонентов - органелл и включений.
Гиалоплазма представляет собой коллоидную систему и имеет сложный химический состав (белки, нуклеиновые кислоты, аминокислоты, полисахариды и другие компоненты). Она обеспечивает транспортные функции, взаимосвязь всех структур клетки и откладывает запас веществ в виде включений. Из белков (тубулина) формируются микротрубочки, входящие в состав центриолей; базальных телец ресничек.
Органоиды - это структуры, постоянно находящиеся в клетке и выполняющие определенные функции. Их разделяют на мембранные и немембранные. К мембранным относятся: митохондрии, эндоплазматическая сеть, комплекс Гольджи, лизосомы и пероксисомы. К немембранным относятся: рибосомы, цитоскелет клетки (включает микротрубочки, микрофиламенты и промежуточные филаменты) и центриоли. Большинство органоидов общего значения, встречающихся во всех клетках органов. Но в некоторых тканях есть специализированные органоиды. Так в мышцах - миофиламенты, в нервной ткани - нейрофиламенты.
Рассмотрим морфологию и функции отдельных органелл:
3. Органоиды и включения
Немембранные органоиды:
Митохондрии (митос - нить; хондр - зерно)
Открыты в конце прошлого столетия. С помощью электронного микроскопа выяснена их структура.
Покрыта двумя мембранами, между которыми находится межмембранное пространство. Наружная мембрана пористая. На внутренней мембране находятся кристы, на которых расположены АТФ-сомы (особые структуры - частицы с ферментами) где происходит синтез АТФ. Внутри находится матрикс, где обнаруживаются нити ДНК, гранулы рибосом, и-РНК, т-РНК и электронноплотные частицы, где располагаются катионы Ca и Mg.
В матриксе находятся ферменты, расщепляющие продукты гликолиза (анаэробные окисления) до СО2 и Н. Ионы водорода поступают в АТФ-сомы и соединяются с кислородом, образуя воду. Освобожденная при этом энергия используется в реакции фосфорилирования с образованием АТФ. АТФ способна распадаться до АДФ и фосфорного остатка, а также энергия, которая используется для осуществления синтетических процессов.
Таким образом, митохондрии связаны с выработкой энергии путем синтеза АТФ, поэтому они считаются энергетическими станциями клеток. Наличие ДНК и рибосом свидетельствует об автономном синтезе некоторых белков. Продолжительность жизни митохондрий в нейронах от 6 до 30 дней. Новообразование митохондрий происходит за счет почкования и образования перетяжек с последующим разделением на две. Количество митохондрий - от 1000 до 3000, а в яйцеклетках до 300.000 (убыль их пополняется за счет деления и почкования).
Эндоплазматическая сеть
Представляет собой систему уплощенных цистерн, трубочек и везикул, создающих в совокупности мембранную сеть цитоплазмы клеток. Если к наружной поверхности прикреплены рибосомы, то сеть гранулярная (шероховатая), без рибосом - агранулярная. Основная функция эндоплазматической сети - накопление, изоляция и транспорт образуемых веществ. В гранулярной сети происходит синтез белков, в агранулярной - синтез и расщепление гликогена, синтез стероидных гормонов (липидов), обезвреживание токсинов, концерогенных веществ и др. В мышечных волокнах и клетках гладкой мышечной ткани эндоплазматическая сеть является депо Са. Образуемые в сети вещества поступают в комплекс Гольджи.
Комплекс Гольджи
Был открыт в 1898 году. Ученые пришли к выводу, что этот органоид избирательно концентрирует вещества, синтезируемые в клетке. Комплекс Гольджи состоит из уплощенных цистерн или мешочков; транспортных пузырьков, приносящих из эндоплазматической сети белковый секрет; вакуолей, конденсирующих секрет, которые отделяются от мешочков и цистерн. Секрет в вакуолях уплотняется, и они превращаются в секреторные гранулы, которые затем выводятся из клетки.
Формируется комплекс Гольджи снизу на формирующей поверхности из фрагментов (транспортных пузырьков) эндоплазматической сети, находящейся под ним. Фрагменты отделяются, соединяются и формируют мешочки или цистерны. В цистернах комплекса Гольджи происходит также синтез гликопротеидов, т.е. модификации белков, путем соединения полисахаридов с белками и формирование лизосом. Участвует в формировании мембран, начатое в эндоплазматической сети.
Лизосомы
Были открыты в 1955 году. Имеют вид пузырьков, ограниченных мембраной. Обнаружили их по наличию гидролитических ферментов (кислой фосфатазы). Основная их функция - расщепление попавших извне веществ, а также органелл и включений в ходе обновления или при снижении функциональной активности (а также и всей клетки в условиях инволюции органа - например, инволюции матки после родов). Таким образом, лизосомы - это пищеварительная система клетки.
Различают 4 формы лизосом:
1. Первичные - запасающая гранула.
2. Вторичные (фаголизосомы), в которых происходит активация ферментов и лизис веществ.
3. Аутофагосомы - гидролиз внутриклеточных структур.
4. Остаточные тельца, содержимое которых выводится из клетки путем экзоцитоза.
Переваренные вещества поступают (диффундируют) в гиалоплазму и включаются в обменные процессы.
Пероксисомы
Это сферические структуры диаметром 0,3-1,5 мкм. Их матрикс может быть аморфным, зернистым и кристаллическим. Они происходят из эндоплазматической сети и напоминают лизосомы, только менее электронноплотны. В них содержится фермент каталаза, разрушающий перекиси, образующиеся при расщеплении липидов, которые токсичны для клетки, нарушая функции мембран.
Немембранные органоиды:
Рибосомы
Это структуры, которые связаны с синтезом белка. Они образуются в ядрышке и состоят из рибосомного белка, поступающего из цитоплазмы, и рибосомной РНК, синтезируемой в ядрышке. В структуре рибосом различают большую и малую субъединицы, связанные ионами Мg. Рибосомы либо свободно располагаются в цитоплазме либо в виде небольших скоплений (полисом), либо связаны с эндоплазматической сетью.
Свободные рибосомы и полисомы встречаются в молодых клетках и синтезируют белок для роста самой клетки, а рибосомы на эндоплазматической сети синтезируют белок «на экспорт». Для синтеза белка необходимо:
1) аминокислоты (их 20);
2) Инф-РНК (образуется в ядре, на ней существуют тринуклеотиды, которые формируют код;
3) транспортная РНК
4) ряд ферментов.
Цитоскелет
Долгое время ученые не знали, что поддерживает порядок в клетке и не позволяет сбиться в кучу ее содержимому, что заставляет цитоплазму перемещаться, менять форму, пока не был изобретен электронный микроскоп. Стало ясно, что пространство между ядром и внутренней поверхностью плазмолеммы имеет упорядоченную структуру. Во-первых, оно перегорожено и разбито на отсеки с помощью внутренних мембран и во-вторых, внутриклеточное пространство заполнено различными филаментами - нитевидными белковыми волокнами, составляющими скелет. По диаметру эти волокна разделили на микротрубочки, микрофибриллы и промежуточные филаменты. Оказалось, что микротрубочки - это полые цилиндры, состоящие из белка тубулина; микрофибриллы - длинные фибриллярные структуры, состоящие из белков актина и миозина; а промежуточные - из разных белков (в эпителии - кератин и др.) Микротрубочки и микрофибриллы обеспечивают двигательные процессы в клетке и участвуют в опорной функции. Промежуточные филаменты выполняют только опорную функцию.
В последнее время ученые обнаружили 4-ый компонент цитоскелета - тонкие филаменты, которые обеспечивают связь основных компонентов цитоскелета. Они пронизывают всю цитоплазму, формируя решетки и, возможно, участвуют в передаче сигналов от поверхности клетки к ядру.
Микротрубочки принимают участие в образовании центриолей, представленных в виде двух цилиндров, перпендикулярных друг другу. Цилиндры состоят из 9 триплетов микротрубочек (9 x 3)+0. С центриолями связаны сателлиты, являющиеся центрами сборки веретена деления. Вокруг центриолей радиально расположены тонкие фибриллы, образующие центросферу. Все вместе называются клеточным центром.
При подготовке к делению происходит удвоение центриолей. Две центриоли расходятся, и около каждой формируется по одной новой дочерней. Пары расходятся по полюсам. При этом старая сеть микротрубочек исчезает и сменяется митотическим веретеном, которое также состоит из микротрубочек, но из одинарных неудвоенных (9 x1)+0. Всем этим занимается клеточный центр.
Микротрубочки принимают участие в формировании ресничек и жгутиков. Формула ресничек и аксонемы хвоста сперматозоидов (9 x 2)+2, а базального тельца у основания ресничек (9 x 3)+0. В ресничках и жгутиках кроме тубулина находится денеин. Если нет его или двух центральных трубочек, то реснички и жгутики не двигаются. С этим может быть связано мужское бесплодие и хронический бронхит.
Промежуточные филаменты чаще всего располагаются в тех местах ткани, которые испытывают механическую нагрузку. Благодаря своей прочности они продолжают служить и после гибели клетки (волосы).
Включения
Непостоянные структуры цитоплазмы. Они могут быть липидами, углеводами, белками, витаминами и использоваться клетками как источники энергии и питательных веществ. Могут выделяться из клетки и использоваться организмом (секреторные включения). Включения представляют собой капельки жира, гликогена, ферменты, пигментные включения.
4. Ядро
Является обязательным компонентом полноценной клетки. Оно обеспечивает две функции:
1. Хранение и передачу генетической информации.
2. Реализацию информации с обеспечением синтеза белка.
Наследственная информация хранится в виде неизменных структур ДНК. В ядре происходит воспроизведение или редупликация молекул ДНK (удвоение), что дает возможность двум дочерним клеткам при митозе получить одинаковые объемы генетической информации.
На молекулах ДНК происходит транскрипция разных РНК-информационных, транспортных и рибосомных.
В ядре происходит образование субъедениц рибосом путем соединения рибосомных РНК с рибосомными белками, синтезируемыми в цитоплазме и перенесенными в ядро. Клетки без ядра не способны синтезировать белок (например, эритроциты). Нарушение любой функции ядра приводит к гибели клетки.
Форма ядер в большинстве округлая, но есть палочковидная и сегментированная. В ядре различают ядерную оболочку, кариоплазму (ядерный матрикс), хроматин и ядрышко. Ядерная оболочка - кариолемма состоит из двух липопротеидных мембран, между которыми находится перинуклеарное пространство.
В оболочке имеются ядерные поры (поровый комплекс), диаметром 80-90 нм. В области поры мембраны сливаются. Внутри поры имеется три ряда гранул (белковых глобул) по 8 штук. В центре тоже есть гранула и с каждой из 24 гранул она соединена тонкими нитями (фибриллами), образуя сеточку. Через нее проходят микромолекулы из ядра и в ядро. Число пор может варьировать в зависимости от активности ядра.
На внешней ядерной мембране, обращенной к цитоплазме клетки, размещены полирибосомы, и она может переходить в мембраны эндоплазматической сети.
Внутренняя мембрана имеет связь с плотной пластинкой, которая представляет густую сеть белковых фибрилл, соединяющихся с фибриллами кариоплазмы. Пластинка и фибриллярная система выполняют опорную функцию. Плотная пластинка при помощи специальных белков связана с участками хромосом и обеспечивает порядок их расположения в период интерфазы.
Таким образом, ядерная оболочка является барьером, отделяющим содержимое ядра от цитоплазмы, ограничивая свободный доступ в ядро крупных агрегатов и регулируя транспорт микромолекул между ядром и цитоплазмой, а также фиксирует хромосомы в ядре.
Кариоплазма - бесструктурное вещество, содержит различные белки (нуклеопротеиды, гликопротеиды, ферменты и соединения, участвующие в процессе синтеза нуклеиновых кислот, белков и других веществ). Под большим увеличением видны рибонуклепротеидные гранулы. Выявлены продукты белкового обмена, гликолитические ферменты и другие.
Хроматин - плотное, хорошо окрашивающееся вещество. Он представлен совокупностью хромосом. Хромосомы постоянно присутствуют, но видны лишь во время митоза, так как сильно спирализуются и утолщаются. В интерфазном ядре они деспирализуются и не видны. Сохранившиеся конденсированные участки называются гетерохроматином, а деконденсированные - эухроматином, в котором идет активная работа по синтезу веществ. Много эухроматин обычно в молодых клетках.
Хроматин состоит из ДНК (30-40%), белков (60-70%) и небольшого количества РНК (т.е. дезоксирибонуклеопротеид). Молекула ДНК представляет собой двойную спираль, с различными азотистыми основаниями Белки представлены гистонами и негистонами. Гистоны (основные) выполняют структурную функцию, обеспечивая укладку ДНК. Негистоны образуют матрикс в интерфазном ядре и регулируют синтез нуклеиновых кислот.
Ядрышко - тельце округлой формы внутри ядра. Это место образования рибосомных РНК и формирования рибосом. Ядрышковыми организаторами являются участки хромосомы (или ДНК), которые содержат гены, кодирующие синтез рибосомных РНК. Эти участки прилегают к поверхности ядрышка в виде конденсированного хроматина, где синтезируется предшественник РНК. В зоне ядрышка предшественник одевается белком, образуя субъеденицы рибосомы. Выходя в цитоплазму, они заканчивают свое формирование и участвуют в процессе синтеза белка.
В составе ядрышка различают: ядрышковый хроматин, фибриллярные (филаменты РНК) и гранулярные (гранулы РНК-формирующиеся рибосомы) структуры, состоящие из нуклеопротеидов. Фибриллярные и гранулярные компоненты образуют ядрышковую нить (нуклеолонему).
5. Химический состав клеток
Клетка состоит из органических и неорганических соединений. К неорганическим относятся вода и соли. Вода составляет большую часть массы клетки. В разных тканях содержание воды неодинаково (в костной - 20%, в мышечной - 70%). Значение воды огромно. Она является основным растворителем и сама участвует в обменных процессах.
Минеральные вещества представлены растворами различных солей. Их содержится от 2 до 5%. Больше содержится элементов К, Na, Ca, P, S, Mg, Fe, Cl. Остальные элементы Mn, Co, Cu, Zn, I содержатся в сотых и тысячных долях процента, но очень важны, так как участвуют в важных физиологических процессах и имеют существенное значение в жизнедеятельности организма.
Органические соединения клеток представляют собой белки, углеводы, жиры, нуклеиновые кислоты и др. Углеводы в соединении с белками и липидами входят в состав мембран, нуклеиновых кислот, входят в состав межклеточного вещества соединительной ткани, и в состав БАВ (биологически активные вещества). Углеводы при окислении выделяют энергию, используемую в жизненных процессах. Жиры доставляют организму еще большее количество энергии. Липиды входят в состав мембран.
Белки выполняют многочисленные функции: Входят в состав мембран клеток, обладают каталитическими свойствами (ферменты), используются как источники энергии, обладают защитными свойствами (имунный), являются переносчиками О2 (гемоглобин), образуют структуру, осуществляющую движение клетки (актин, миозин, тубулин).
Нуклеиновые кислоты - чрезвычайно важные соединения. Они отвечают за хранение и передачу наследственной информации и регуляцию синтеза белка.
Тема 2. Частная и общая эмбриология
План
1. История развития и значение эмбриологии
2. Развитие и строение половых клеток
3. Оплодотворение
4. Ранние этапы эмбриогенеза. Дробление
5. Гаструляция и закладка осевых органов
6.Формирование внезародышевых органов
7. Эмбриогенез птиц
8. Эмбриогенез млекопитающих
1. История развития и значение эмбриологии
Эмбриология (embryon - зародыш, logos - учение)- наука о закономерностях развития организма животных от момента оплодотворения яйцеклетки и образования зиготы до рождения или вылупления из яйца.
Начало развития эмбриологии было положено в Греции более 2-х тысяч лет назад. Впервые Гиппократ описал развитие зародыша в курином яйце и пытался понять процесс развития эмбриона у млекопитающих.
Позднее Аристотель достаточно полно описал процесс развития у млекопитающих внутренних органов в эмбриогенезе. Описал функции плаценты и пуповины. Им впервые было выявлено, что в начальный период развития в организме появляются общие черты, свойственные животным вообще, а позднее формируются частные признаки, характерные данному типу, или виду животных.
С изобретением микроскопа в 17 веке Левенчук открыл спермии, а Грааф описал фолликулы в яичнике, приняв их за яйцеклетку. И только спустя 150 лет были обнаружены внутри фолликулов яйцеклетки.
В дальнейшем в развитие эмбриологии внесли вклад многие ученые, в том числе и работавшие в России (Вольф, Пандр, Бер, Ковалевский, Северцов, Боголюбский и др.)
Особенно бурное развитие получила эмбриология в последние 50 лет в связи с использованием современных методов исследования (электронной микроскопии, гистохимии, гистоавторадиографии, микрохирургии, культуры тканей и др.
Достижения современной эмбриологии нашли широкое применение в практике животноводства и ветеринарии. Это искусственное осеменение животных, стимуляция многоплодия, трансплантация эмбрионов. Генно- инженерные манипуляции позволили ученым получить животное от соматической клетки (Овечка Долли в Шотландии).
Знание эмбриологии позволяет ветеринарным врачам выяснять причины бесплодия и других вопросов акушерства, что необходимо для эффективного лечения животных, повышения их плодовитости и тем самым ускорения воспроизводства животных.
2. Развитие и строение половых клеток
Процесс развития половых клеток называют прогенезом. Он происходит в половых железах (гонадах)- яичниках и семенниках. Родоначальником половых клеток являются гаметобласты.
Они формируются у животного уже в зародышевый период развития из клеток первичной эктодермы в стенке желточного мешка.
Отсюда с током крови гаметоблаты мигрируют в зачатки половых желез, где впоследствии из них развиваются спермии и яйцеклетки. Процесс образования спермиев называется сперматогенезом, а яйцеклеток - овогенезом.
Сперматогенез - происходит в извитых канальцах семенников и завершается в половых путях самца.
Весь процесс включает 4 последовательных периода: размножение, рост, созревание и формирование.
В период размножения первичные половые клетки (сперматогонии) усиленно делятся путем митоза и располагаются по периферии семенного канальца. Они связаны между собой цитоплазматическими мостиками, формируя синцитий. Затем отдельные сперматогонии перестают делиться и вступают во второй период - роста.
Период роста. В этот период сперматогонии увеличиваются в объеме, в их цитоплазме происходит активный синтез нуклеиновых кислот, белков, углеводов, увеличивается ядро, количество митохондрий. Они становятся сперматоцитами 1-го порядка и вступают в тесный контакт с поддерживающими клетками Сертоли (сустентоциты), выполняющими опорную, трофическую и защитную функции.
В период созревания происходит мейоз состоящий из двух последовательных делений:
1) редукционное, при котором из сперматоцитов 1-го порядка образуются сперамтоциты 2-го порядка с гаплоидным набором хромосом.
2) Сперматоциты 2-го порядка сразу же вступают во 2-ое (эквационное деление). В результате которого из каждого сперматоцита 2-го порядка образуется два сперматида, имеющие также гаплоидный набор хромосом. Таким образом, из каждого сперматоцита 1-го порядка образуется 4 сперматида. Половые Х и У хромосомы расходятся по разным сперматидам, в связи с чем два сперматида имеют Х-хромосомы, а 2 - У-хромосомы (пол зависит от спермия).
4-ый период формирования характеризуется перегруппировкой органелл и изменением ядра. Ядро уплотняется и становится головкой будущего спермия. Над ядром в зоне комплекса Гольджи образуется уплотненная гранула (акробласт), который увеличиваясь в размере покрывает ядро в виде чехлика, образуя мембранную шапочку. Внутри этого чехлика из аппарата Гольджи формируется акросома, уплотненное тельце, богатое ферментами гиалуронидазой и трипсином (протеазы). Ферменты играют важную роль в оплодотворении. К противоположному от ядра полюсу перемещается центросома, в которой различают проксимальную и дистальную центриоли.
Они располагаются в области шейки спермия. Дистальная центриоль делится на две части. От передней отрастает осевая нить хвостика, состоящая из микротрубочек (9*2+2). Задняя часть образует колечки и сползает по осевой нити хвостика, увлекая за собой цитоплазму, митохондрии и капельки гликогена.
Миттохондрии и гликоген располагаются в начальном отделе хвостика. Цитоплазма, смещаясь по хвостику тонким слоем одевает главную его часть. Конец хвостика покрыт только плазмолеммой.
Клетка продолжает удлиняться и приобретает вид спермия. (Демонстрация схемы строения спермия и рисунок на доске).
Таким образом спермии имеют жгутиковую форму. Подвижность хвостика обусловленна осевой нитью, являющейся производной и продолжением центриоли.
Комплекс трубочек, образующих осевую нить называют аксонемой (9*2+2).
Исследования спермы очень важны в зоотехнии и ветеринарии. В одном эякуляре от 20 до 200 млн. спермиев.
С целью успешного оплодотворения путем искусственного осеменения изучают густоту спермиев, их форму и подвижность.
Создаются банки спермиев от ценных племенных производителей.
Ср. р-р сперматозоидов- 70 мкм движутся со скоростью 50 мкм в 1 час.
Овогенез
Развитие женских половых клеток происходит в яичниках и завершается в яйцеводе.
В отличие от сперматогенеза, овогенез включает 3 периода: размножения, роста, созревания. Период размножения протекает во время внутриутробного развития самки и завершается в течении первых месяцев после рождения.
Гаметобласты усиленно делятся и превращаются в овогонии с диплоидным набором хромосом. Некоторые овогонии прекращают делиться и вступают в период роста. Они быстро увеличиваются в размерах. В них происходит активный синтез нуклеиновых кислот, белков, углеводов. Увеличивается количество органелл и овогонии превращаются в овоциты 1-го порядка. Вначале они окружаются одним слоем фолликулярных клеток и овоцит 1-го порядка называется первичным фолликулом. Затем он покрывается несколькими слоями фолликулярных клеток и становится вторичным фолликулом.
Вещество, выделяемое фолликулярными клетками и самим овоцитом образует вокруг овоцита 1-го порядка блестящую оболочку (зону пеллюцида).
Фолликулярные клетки доставляют овоциту белки, липиды, углеводы для синтеза желтка.
Вблизи цитолеммы в овоците формируется кортикальный слой, состоящий из плотных гранул с ферментами, которые играют важную роль в оплодотворении.
Стадия роста отличается длительностью и сложностью процессов, происходящих в яйцеклетке.
До полового созревания самки активно идет формирование рибосом, синтетического аппарата. Затем с наступлением половой зрелости самки, накапливается большое количество желточных гранул. В состав желточных гранул входит фосфолитин (белок, насыщенный фосфором) и липовитилин (белок в сочетании с липидами).
В блестящем слое с помощью фолликулярных клеток и самой яйцеклетки накапливаются гликопротеиды. Ученые обнаружили три их формы, одна из которых притягивает сперматозоиды, т.к. у спермиев есть рецепторы, которые реагируют на эту форму гликопротеида и они устремляются к яйцеклетке, окружая её в огромном количестве (до 4 тысяч).
От соматических клеток яйцеклетка отличается:
Гораздо большими размерами (130-200 мкм).
Наличием большого количества желточных гранул.
Наличием кортикального слоя под плазмолеммой.
Наличием большого запаса РНК, тубулина, липофосфопротеидов и др.
В процессе созревания исчезают центриоли.
В женских яйцеклетках только Х- хромосома.
Наличием трех оболочек: плазмолеммы, блестящей и фолликулярной (лучистый венец).
В ядре хорошо выражено ядрышко и поровый комплекс.
Гаплоидным набором хромосом.
По количеству желтка различают яйцеклетки:
Олигоцитальные - с малым количеством желтка (у ланцетника и млекопитающих).
Полилецитальные - с большим количеством желтка (у пресмыкающихся и птиц).
По характеру распределения желтка:
Изолицитальные - с равномерным распределением (первично- у ланцетника, вторично - у млекопитающих).
Телолицетальные - с локализацией желтка у одного полюса (у птиц и пресмыкающихся).
Верхняя часть яйцеклеток называется аномальным полюсом, а нижняя- вегетативным. Желток скапливается в вегетативном полюсе.
Как только накопится достаточное количество желтка рост ооцита 1-го порядка прекращается, а фолликул продолжает расти. В нем образуется полость, заполненная жидкостью, содержащей женские половые гормоны (эстроген), и он становится пузырчатым. Затем разрывается и яйцеклетка выходит в яйцевод.
3 стадия созревания - у большинства млекопитающих начинается в яичнике, т.е. до овуляции и заканчивается в яйцеводе. Проникшие в половые пути самки спермии стимулируют процесс мейоза. Иногда он завершается когда спермий уже внедрился в цитоплазму яйцеклетки.
В результате двух последовательных делений (редукционного и эквационного) образуется один овоцит 2-го порядка с гаплоидным набором хромосом и 3 направительных тельца.
3. Оплодотворение
Это процесс слияния мужской и женской половых клеток, в результате которого образуется зигота с диплоидным объединенным набором хромосом, которая дает начало новому организму.
Оплодотворение протекает в 4 стадии:
Сближение половых клеток.
Проникновение спермиев в блестящую оболочку.
Проникновение в цитоплазму.
Слияние ядер половых клеток (синкарион).
1) Движению спермиев к яйцеклетке способствуют колебательные движения хвостика, реотаксис, способность двигаться против тока жидкости и присасывающее действие гладкой мускулатуры матки и яйцеводов, выделяющиеся яйцеклеткой вещества (гинагомоны), наличие в блестящей оболочке специфических рецепторов (гликопротеидов- ZP3). У спермиев есть рецепторы, которые реагируют на эти гликопротеиды и они во множестве (до 4-5 тыс.) окружают яйцеклетку.
2) Выделяющееся яйцеклеткой вещество - фиртилизин вызывает акросомальную реакцию. Плазмолемма головки спермия сливается с наружной мембраной акросомы и ферменты (гиалуронидаза) изливаются наружу, разрушают блестящую оболочку и спермии проникают внутрь самой яйцеклетки. В момент прикосновения спермия к плазмолемме яйцеклетки на её поверхности образуется выпячивание (бугорок оплодотворения).
Далее наступает 3-я стадия оплодотворения. Приблизившись к поверхности яйцеклетки, один из спермиев прикасается к её цитолемме боковой поверхностью головки. В месте контакта мембрана спермия и яйцеклетки частично разрушаются. В результате головка, шейка и начальная часть хвостика проникают в цитоплазму яйцеклетки.
Как только спермий проникнет в цитоплазму, приходят в действие кортикальные пузырьки. Они сливаются с плазмолеммой и изливают ферменты в привитилиновое пространство (область между плазмолеммой и блестящей оболочкой). Ферменты воздействуют на гликопротеиды (рецепторы привлекшие спермии) и в результате изменяют их химическую структуру и блестящая оболочка не пропускает другие спермии, становится оболочкой оплодотворения, хотя по виду остается прежней.
Слияние двух половых клеток. Головка проникшего в цитоплазму спермия постепенно набухает, округляется, превращаясь в гаплоидное круглое ядро или мужской пронуклеус, который вместе со своей центросомой продвигается к центру яйца. Сюда же после завершения мейоза движется и ядро яйца- женский пронуклеус. Происходит слияние пронуклеусов (синкарион) и удваивается число хромосом. Женская и мужская наследственность объединились и дали начало новому организму.
Центриоли, внесенные спермием расходятся, образуя веретено деления. Ядерная оболочка исчезает, отцовские и материнские хромосомы формируют звезду первого митотического деления оплодотворенной яйцеклетки и начинается дробление - первый этап эмбриогенеза.
4. Ранние этапы эмбриогенеза. Дробление
Зигота в течение нескольких дней остается окруженной блестящей оболочкой, поэтому дробление не приводит к увеличению объема зиготы.
Дочерние клетки не расходятся. А тесно прилегают друг к другу. Размеры клеток с увеличением их количества уменьшаются, поэтому процесс и называется дроблением.
Деление клеток проходит быстро одно за другим, интерфазы практически нет, поэтому дочерние клетки не дорастают до размеров материнской и становятся все мельче и мельче.
Образующиеся в результате дробления клетки называются бластомерами.
Процесс дробления (с 1 по 4 суток) осуществляется в яйцеводах по пути следования яйца в матку.
У разных животных зиготы дробятся неодинаково. Тип дробления определяется количеством и распределением желтка. Чем больше в цитоплазме желточных гранул, тем медленнее делится соответствующая часть зиготы. Желток задерживает процесс дробления. При большом содержании желтка деление определенной части зиготы становится невозможным, поэтому дробление бывает полным и неполным.
Дробление |
|||
Полное |
Неполное (у птиц) |
||
Равномерное (у ланцетника) |
Неравномерное (у млекопитающих) |
||
Целобластула |
Морула |
Дискобластула |
|
Бластоциста |
При полном дроблении принимает участие весь материал зиготы, при неполном та часть, где нет желтка.
Полное дробление бывает равномерным, если бластомеры одинаковой величины и неравномерным - бластомеры разной величины.
Полное равномерное дробление характерно для ланцетника. При этом образуются одинаковые бластомеры, которые располагаются в один слой и образуют зародыш в виде пузырька с полостью, который называется целобластулой.
Полное галобластическое неравномерное асинхронное дробление характерно для млекопитающих с олигоцетальными мезолецитальными яйцеклетками.
В результате дробления у млекопитающих образуется вначале плотный шар, называемый морулой, а затем зародышевый пузырек с небольшой полостью, называемой бластоцистой или серобластулой.
Неполное (частичное) дробление свойственно яйцеклеткам птиц.
Дробление происходит только в анимальном полюсе. Образующиеся бластомеры формируют дискобластулу.
Таким образом первый этап эмбриогенеза - дробление заканчивается формированием бластулы.
Гаструляция и закладка осевых органов
Вслед за дробленим начинается следующий этап эмбриогенеза - гаструляция с образованием зародышевых листков. Зародышевые листки располагаются строго закономерно: эктодерма - наружный листок, энтодерма- внутренний, мезодерма занимает промежуточное положение. В основе гаструляции лежат следующие процессы: размножение, рост, перемещение, взаимодействие клеток и их дифференцировка.
Дифференцировкой называется ряд морфологических и гистохимических изменений в клетках.
Перераспределение клеточного материала при гаструляции происходит 4 способами:
Инвагинация - впячивание (у ланцетника)
Обрастание - эпиболия (у земноводных)
Расслоение - деламинация (у млекопитающих
Выселение - иммиграция и птиц)
В процессе гаструляции происходит также и формирование мезенхимы - эмбриональной соединительной ткани. Мезенхима состоит из клеток, выселившихся в основном из мезодермы. Клетки мезенхимы заполняют пространство между зародышевыми листками и формирующимися органами.
Из зародышевых листков и мезенхимы происходит формирование всех тканей и органов, т.е. гистогенез и органогенез развивающегося организма.
Вначале закладываются осевые зачатки органов - нервная трубка, хорда, кишечная трубка. Хорда - это скелетный тяж, который располагается вдоль тела животного. Позже на месте хорды у птиц и млекопитающих развивается позвоночник.
Нервная трубка формируется над хордой из первичной эктодермы. В начале из изменившихся клеток образуется пластинка, затем желобок и трубка. По бокам формируются нервные валики. Из клеток трубки и валиков формируются ткани и все органы нервной системы, а также органы чувств.
Остальная зародышевая эктодерма является источником развития кожного эпителия зародыша.
Из второго зародышевого листка - энтодермы, образуется кишечная трубка и хорда. Из кишечной трубки развивается эпителий органов пищеварения, органов дыхания и некоторых органов эндокринной системы.
Мезодерма дифференцируется на
сомиты, лежащие по бокам нервной трубки и хорды (дерматом, миотом, склеротом)
сегментные ножки, (нефрогонотомы) и спланхнотомы, боковые пластинки (висцеральная и париетальная).
Из дерматома развиваются соединительно- тканная часть кожи, из миотома скелетная мускулатура, из склеротома- хрящи и скелет.
Из нефрогонотома развиваются эпителиальные зачатки почек и половых желез.
Из листков спланхнотома образуется эпителий серозных оболочек брюшины, плевры, перикарда.
Из мезенхимы развивается кровь и лимфа, кроветворные органы, сосуды, собственно соединительная ткань, гладкая мышечная ткань.
В процессе органогенеза взаимосвязь и взаимопроникновение зародышевых листков настолько тесные, что в образовании каждого органа принимают участие клеточные элементы почти всех зародышевых листков.
В процессе эмбриогенеза признаки, характерные для животного, появляются постепенно. Вначале у животных разных типов сходен характер возникновения и расположения осевых органов. Затем становятся видны черты, присущие классу, позже отряду, роду, виду, породе и, наконец, индивидууму.
6. Формирование внезародышевых органов
В стадии гаструляции и образования осевых органов происходит формирование внезародышевых органов, которые обеспечивают условия для нормального развития эмбриона. Они развиваются из внезародышевой части зародышевых листков. Внезародышевые органы функционируют только в период эмбрионального развития, поэтому их называют провизорными, т.е. непостоянными.
Они окружают зародыш в виде оболочек. К ним относятся:
Желточный мешок образуется энтодермальным и висцеральным листками. Выполняет трофическую, кроветворную и дыхательную функцию.
Амнион образован эктодермой и мезодермой, создает вокруг зародыша водную среду, выполняет защитную функцию и участвует в питании плода у птиц.
Аллантоис - образован энтодермой и висцеральным листком мезодермы. Вырастает из стенки задней кишки. Это орган газообмена и выделения.
Серозная оболочка (у птиц) образуется из эктодермы и париетального листка мезодермы одновременно с амниотической оболочкой. Участвует в снабжении эмбриона кислородом и кроме того выполняет защитную функцию.
Хорион - (у млекопитающих) развивается из трофобласта и внезародышевой мезодермы. Мезодерма подрастает к трофобласту и образует вместе с ним вторичные ворсинки и трофобласт превращается в хорион.
Плацента - врастая в слизистую оболочку хорион вместе с ней образует плаценту. Функция трофическая, дыхательная, выделительная, гормональная, защитная.
7. Эмбриогенез птиц
В яйце птиц собственно яйцеклеткой является желток с зародышевым диском. По количеству желтка яйцеклетка полилецитальная по распределению, резко телолицетальная.
Снаружи желток покрыт первичной тонкой оболочкой. После овуляции (выхода из яичника) вторичная фолликулярная оболочка утрачивается. Яйцеклетка попадает в яйцевод, где оплодотворяется и на неё по мере продвижения начинают наслаиваться третичные оболочки- белковая, подскорлуповая и скорлупа.
В белке формируются два плотных тяжа(халаза) из пучков белково- углеводных нитей, которые поддерживают желток в центральном положении. Подскорлуповая оболочка состоит из двух листков, которые расщепляются на тупом конце, образуя воздушную камеру. Подскорлуповая оболочка состоит из белкового волокнистого материала, скорлупа - из более грубых волокон, пропитаных солями Са.
Спермии в половых путях самки живут и оплодотворяют яйцеклетку в течение 30 дней. В верхней трети яйцевода яйцеклетка оплодотворяется и превращается в зиготу, дробление которой происходит только на анимальном полюсе.
В результате формируется дискобластула и начинается процесс гаструляции. Таким образом, оплодотворенные и снесенные яйца имеют уже двухслойный зародыш. До инкубации или насиживания эмбриогенез приостанавливается. Через 12ч инкубации в центре зародышевого диска образуется зародышевый щиток - утолщенный участок зародышевого диска. Он представлен светлой зоной в которой формируется зародыш и темной зоной, окружающей светлую в виде плотного кольца, из которой в дальнейшем развиваются внезародышевые органы.
В светлой зоне зародышевого щитка клетки энергично передвигаются (мигрируют) двумя потоками в каудальном направлении, затем, соединяясь, передвигаются по средней линии вперед, формируя первичную полоску в форме утолщенного клеточного валика. Затем в середине этой полоски образуется углубление (первичная борозда). На конце которой формируетс утолщение (гензеновский узел).
Клеточные потоки из гензеновского узелка уходят вперед и вглубь и начинают формировать осевые органы птицы. Разрастается хордальный отросток, затем по сторонам от него образуются клеточные тяжи, растущие вперед и в стороны, вклиниваясь между эктодермой и энтодермой, формируя мезодерму- третий зародышевый листок. Из эктодермы формируется нервная трубка.
Таким образом, ранний зародыш состоит из эктодермы, энтодермы, нервной трубки, хорды и мезодермы. Он лежит, распластавшись на поверхности желточного мешка, который окружен энтодермой и висцеральным листком мезодермы.
Из мезодермы в стенкам желточного мешка образуются клетки крови и кровеносные сосуды и он становится аппаратом питания, выполняя трофическую и кроветворную функции.
Из внезародышевых листков стенках раннего зародыша сначала образуется туловищная, а затем амниотическая складки. Туловищная складка приподнимает зародыш над желтком и замыкает энтодерму в кишечную трубку.
Амниотическая складка разрастаясь над зародышем и смыкаясь краями формирует две плодовые оболочки- серозную (из наружной части складки) и амнион (из внутренней части складки).
Серозная оболочка подрастает под скорлупу и участвует в снабжении эмбриона кислородом и в минеральном обмене. С помощью многочисленных ворсинок клетки серозной оболочки контактируют со скорлупой. Они секретируют соляную кислоту, которая вводится в канальцы скорлупы и растворяет соли кальция. Попадая в кровяное русло они приносятся в тело зародыша и участвуют в формировании скелета.
Амнион окружает только зародыш и создает для него водную среду.
Серозная оболочка, разрастаясь окружает и белок, который начинает поступать по серозно - амниотическому каналу в полость амниона на питание зародыша. Эктодерма амниона продуцирует амниотическую жидкость, которая заполняет амниотическую полость, создавая для развивающегося зародыша самую благоприятную водную среду. Амнион выполняет защитную функцию, он сглаживает удары и создает для эмбриона возможность подвижности.
Аллантоис - образуется после заверщения формирования кишечника на вентральной поверхности задней кишки. Он состоит из энтодермы и висцерального листка мезодермы. Аллантоис постепенно заполняет все щели между амнионом, желточным мешком и серозной оболочкой, срастаясь с мезодермальным листком серозы.
В этом участке формируется густая сеть кровеносных сосудов, что способствует увеличению снабжения организма кислородом.
Таким образом, аллантоис, прилегая к скорлупе участвует в газообмене и выполняет функцию выделительного ргана, т.к. в нем скапливаются продукты обмена. Развитие птиц протекает стадийно. Наиболее важными периодами в развитии птиц являются следующие:
Латеральное питание (первые 30-36 часов). Материалом для питания служит желток Латебры, содержащий белок, соли и воду. Источником энергии является гликоген. Отсутствует кровообращение, зародыш в кислороде почти не нужнается.
Желточное питание и наличие желточного круга кровообращения (с 30-36 до 7-8 дней инкубации). К 30-му часу закладывается сердце и желточный мешок, в стенках которого развиваются кровеносные сосуды. Запас гликогена исчезает. В организм поступает кислород, что облегчает использование белков и жиров. Развивается нервная система, начинается биение сердца, сокращение мускулатуры тела. Закладка печени обуславливает синтез мочевины, поэтому продукты распада белков становятся менее вредными.
Дыхание кислородом и питание белками (с 7-8 до 18-19 дней). Интенсивно развивается и функционирует аллантоис, в стенке которого густая сеть кровеносных сосудов. Прилегая к серозной оболочке, аллантоис обеспечивает снабжение кислородом. Растворяется скорлупа и возрастает интенсивность минерального обмена, усиливается освоение жиров.
Потребление кислорода воздуха из воздушной камеры. (18-19 дней до наклева). Переход на легочное дыхание. Начинает функционировать малый круг кровообращения, появляется артериальная кровь. Аллантоис подвергается обратному развитию и цыпленок испытывает недостаток в кислороде и проклевывает скорлупу.
Стадия вылупления. Питание остатком желтка, который втягивается в полость кишки. Цыпленок освобождается от скорлупы.
2-ая классификация: зародышевый период (8 дней), предплодный (8-13 дней (наряду с желтком питание кишечное), плодный период (13-20), вылупление (20-21).
Эмбриогенез млекопитающих
Яйцеклетка млекопитающего в отличие от птиц содержит мало желтка (олиголицетальная и вторично изолицетальная) и дробление зиготы полное неравномерное. В результате получаются мелкие и крупные бластомеры. Мелкие выселяются под самую блестящую оболочку, формируя трофобласт, а крупные собираются в кучку, формируя внутри зародышевый узелок или эмбриобласт. Затем с помощью трофобласта внутри зародышевого пузырька начинает накапливаться жидкость, оттесняя эмбриобласт вверх к трофобласту и распластывая его в один слой. Этот слой крупных клеток представляет собой зародышевый диск у млекопитающих, из которого формируются все органы и ткани животного и некоторые внезародышевые органы. Трофобласт выполняет вспомогательную роль. С его помощью зародыш начинает получать питательные вещества из стенки матки и зародышевый пузырек быстро разрастается.
В середине зародышевого диска образуется уплотненная темная зона (зародышевый щиток) из которого развивается тело зародыша, из окружающих светлых клеток формируются внезародышевые органы. В зародышевом щитке начинают происходить те же процессы, что и у птиц (формирование первичной полоски и гензеновского узелка и т.д.). Аналогично формируются и внезародышевые органы.
...Подобные документы
Онтогенез как процесс формирования организмов с момента образования половых клеток и оплодотворения или отдельных групп клеток до завершения жизни. Исторические предпосылки и этапы развития эмбриологии как науки. Развитие одноклеточных организмов.
контрольная работа [140,7 K], добавлен 08.05.2011История гистологии - раздела биологии, изучающего строение тканей живых организмов. Методы исследования в гистологии, приготовление гистологического препарата. Гистология ткани - филогенетически сложившейся системы клеток и неклеточных структур.
реферат [24,3 K], добавлен 07.01.2012Гистология как наука о происхождении, строении, функции и регенерации тканей живых организмов. Эволюционная эмбриология, развитие на примере млекопитающих. Критический период как период повышенной чувствительности организма к действию внешних факторов.
реферат [20,3 K], добавлен 18.01.2010Гистология - учение о развитии, строении, жизнедеятельности и регенерации тканей животных организмов и организма человека. Методы ее исследования, этапы развития, задачи. Основы сравнительной эмбриологии, науки о развитии и строении зародыша человека.
реферат [9,9 K], добавлен 01.12.2011Образование тканей из зародышевых листков (гистогенез). Понятие как стволовых клеток как полипотентных клеток с большими возможностями. Механизмы и классификация физиологической регенерации: внутриклеточная и репаративная. Виды эпителиальных тканей.
реферат [19,6 K], добавлен 18.01.2010Гистология — наука о строении, развитии и жизнедеятельности тканей животных организмов и общих закономерностях тканевой организации; понятие цитологии и эмбриологии. Основные методы гистологического исследования; приготовление гистологического препарата.
презентация [1,5 M], добавлен 23.03.2013Структура, физиологическое значение и возрастные особенности систем органов человеческого организма. Кровь и сердечно-сосудистая система. Нервная, пищеварительная, дыхательная, мочеполовая, эндокринная, опорно-двигательная, сенсорная, речевая системы.
реферат [33,7 K], добавлен 06.12.2014Основные концепции современной физиологии. Лимфатическая, дыхательная, пищеварительная системы. Обмен веществ и энергии. Физиология выделений и железы внутренней секреции. Строение нервной системы, высшая нервная деятельность. Система кровообращения.
реферат [35,3 K], добавлен 01.08.2010История систематического изучения закономерностей эволюции тканей. Теория параллелизма гистологических структур. Теория дивергентной эволюции тканей. Теория филэмбриогенеза в гистологии. Эпителиальная, производные мезенхимы, мышечная и нервная ткань.
презентация [890,0 K], добавлен 12.11.2015Млекопитающие - высший класс позвоночных и всего царства животных. Строение: скелет; мышечная, нервная, кровеносная, дыхательная, выделительная, пищеварительная системы; температура тела; размножение. Происхождение и развитие класса млекопитающих.
реферат [2,7 M], добавлен 28.02.2008Процесс зачатия, имплантации, зарождения человека. Описание фаз оплодотворения. Органы, которые развиваются в первую очередь. Характеристика основных периодов внутриутробного развития. Влияние вредных факторов окружающей среды на развитие плода.
презентация [898,0 K], добавлен 24.07.2014Изучение особенностей строения и основных этапов развития мужской половой системы, которая выполняет две функции: генеративную, связанную с выработкой половых клеток и эндокринную, которая заключается в выработке половых гормонов. Процесс сперматогенеза.
реферат [13,8 K], добавлен 04.12.2011Основные системы органов животных: опорно-двигательная, пищеварительная, выделительная, кровеносная, дыхательная, нервная, органы чувств, эндокринная и половая: назначение, состав, функции по обеспечению жизнедеятельности организма, характеристика.
контрольная работа [14,0 K], добавлен 21.11.2011История зарождения гистологии как науки. Гистологические препараты и методы их исследования. Характеристика этапов приготовления гистологических препаратов: фиксация, проводка, заливка, резка, окрашивание и заключение срезов. Типология тканей человека.
презентация [1,6 M], добавлен 20.11.2014Образование и условия функционирования нервых тканей. Строение, особености их работы, принципы построения в теле. Расположение и функции нервных клеток, особенности их регенирации. Роль синапсов как соединений между ними. Чувствительные нервные окончания.
реферат [10,7 K], добавлен 04.12.2011Координация нервной системой деятельности клеток, тканей и органов. Регуляция функций организма, взаимодействие его с окружающей средой. Вегетативная, соматическая (сенсорная, моторная) и центральная нервная система. Строение нервных клеток, рефлексы.
реферат [27,6 K], добавлен 13.06.2009Опорно-трофические (соединительные) ткани - клетки и межклеточное вещество организма человека, их морфология и функции: опорная, защитная, трофическая (питательная). Виды тканей: жировая, пигментная, слизистая, хрящевая, костная; специальные свойства.
реферат [20,9 K], добавлен 04.12.2011Основы гистологической техники. Цитохимические методы исследования клеток и тканей. Наружная цитоплазматическая мембрана, типы и происхождение пластид, их строение и функции. Мейоз (редукционное деление клетки), его фазы и биологический смысл.
контрольная работа [22,7 K], добавлен 07.06.2010Основные положения гистологии, которая изучает систему клеток, неклеточных структур, обладающих общностью строения и направленных на выполнение определенных функций. Анализ строения, функций эпителия, крови, лимфы, соединительной, мышечной, нервной ткани.
реферат [31,3 K], добавлен 23.03.2010Изучение видов и функций различных тканей человека. Задачи науки гистологии, которая изучает строение тканей живых организмов. Особенности строения эпителиальной, нервной, мышечной ткани и тканей внутренней среды (соединительной, скелетной и жидкой).
презентация [309,1 K], добавлен 08.11.2013