Гистология с основами эмбриологии

Гистология, классификация и морфология тканей. Общая эмбриология, развитие и строение половых клеток; внутриутробное развитие плода от момента оплодотворения до рождения. Сердечно-сосудистая, пищеварительная, дыхательная, эндокринная, нервная системы.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 13.12.2018
Размер файла 241,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3. Плазматические клетки (нлазмоцитм). Их величина колеблется от 7 до 10 мкм. Форма клеток округлая или овальная. Ядра относительно небольшие, круглой или овальной формы, расположены эксцентрично. Цитоплазма резко базофильна, содержит хорошо развитую гранулярную эндоплазмагическую сеть, в которой синтезируются белки (антитела). Базофилии лишена только небольшая светлая зона около ядра образующая так называемую сферу, или дворик. Здесь обнаруживаются центриоли и комплекс Гольджи.

Функции: эти клетки обеспечивают гуморальный иммунитет. Они синтезируют антитела - гаммаглобулины (белки), вырабатывающиеся при появлении в организме антигена и обезвреживающие его.

4. Тканевые базофилы (тучные клетки). Клетки их имеют разнообразную форму, иногда с короткими широкими отростками, что обусловлено способностью их к амебоидным движениям. В цитоплазме находится специфическая зерии-стость (синего цвета), напоминающая гранулы базофильных лейкоцитов. В ней содержится гепарин, гиалуроновая кислота гистамин и серотонин. Органеллы тучных клеток развиты слабо.

Функция: тканевые базофилы являются регуляторами местного гомеостаза соединительной ткани. В частности, гепарин снижает проницаемость межклеточного вещества, свертываемость крови, оказывает противовоспалительное влияние. Гистамин же выступает как его антагонист.

5. Адипоциты (жировые клетки) - располагаются группами, реже - поодиночке. Накапливаясь в больших количесгвах. эти клетки образуют жировую ткань. Форма одиночно расположенных жировых клеток шаровидная, они содержат одну большую каплю нейтрального жира (триглицеридов), занимающую всю центральную часть клетки и окруженную тонким цитоплазматическим ободком, в утолщенной части которого лежит ядро. В связи с этим, адипоииты имеют перстневидную форму. Кроме того, в цитоплазме адипоцитов имеется небольшое количество холестерина, фосфолипидов. свободных жирных кислот и др.

Функция: обладают способностью накапливать в больших количествах резервный жир принимающий участие в трофике, энергообразовании и метаболизме воды.

- Пигментные клетки - имеют короткие, неностоянной формы отростки. Эти клетки содержат в своей цитоплазме пигмент меланин, способный поглощать УФЛ.

Функция: защита клеток от действия УФО.

- Адвентиниальные клетки - малоспециализированные клетки, сопровождающие кровеносные сосуды. Они имеют уплощенную или веретенообразную форму со слабо-базофильной цитоплазмой, овальным ядром и слаборазвитыми органеллами.

Функция: выполняет роль камбия.

- Перициты имеют отросчатую форму и в виде корзинки окружакп кровеносные капилляры, располагаясь в расщелинах их базальной мембраны.

Функция: регулируют изменения просвета кровеносных капилляров.

- Лейкоциты мигрируют в соединительную ткань из крови. Функция: см. клетки крови.

Межклеточное вещество состоит из основного вещества и расположенных в них волокон - коллагеновых, эластических и ретикулярных.

Коллагеновые волокна в рыхлой неоформленной волокнистой соединительной ткани располагаются в различных направлениях в виде скрученных округлых или уплощенных тяжей толщиной 1-3 мкм и более. Длина их неопределенна. Внутренняя структура коллагенового волокна определяется фибриллярным белком - коллагеном, который синтезируется в рибосомах гранулярной эндоплазматической сети фибробластов. В строении этих волокон выделяют несколько уровней организации (рис. 6-2):

- Первый - молекулярный уровень - представлен молекулами белка коллагена, имеющих в длину около 280 нм и ширину 1.4 нм. Они построены из триплетов - трех полипептидных цепочек предшественника коллагена - проколлагена. скрученных в единую спираль. Каждая цепочка проколлагена содержит наборы из трех различных аминокислот, многократно и закономерно повторяющихся на протяжении ее длины. Первая аминокислога в таком наборе может быть любой, вторая - пролин или лизин, третья - глицин.

- Второй надмолекулярный, внеклеточный уровень - представляет соединенные в длину и поперечно связанные с помощью водородных связей молекулы коллагена. Сначала образуются протофцбриллы, а 5-6 протофибрилл. скрепленных между собой боковыми связями, составляют микрофибриллы, толщиной около 10 нм. Они различимы в электронном микроскопе в виде слабоизвилистых нитей.

Третий, фибриллярный уровень. При участии гликозами и огликанов и гликопротсинов микрофибриллы образуют пучки фибрилл. Они представляют собой поперечно исчерченные структуры толщиной в среднем 50-100 нм. Период повторяемости темных и светлых участков 64 нм.

- Четвертый, волоконный уровень. В состав коллагенового волокна (толщиной 1-10 мкм) в зависимости от топографии входят от нескольких фибрилл до нескольких десятков.

Функция: определяют прочность соединительных тканей.

Эластические волокна - их форма округлая или уилощенная, широко анастомозируют друг с другом. Толщина эластических волокон обычно меньше коллагеновых. Основным химическим компонентом эластических волокон является глобулярный белок эластин, синтезируемый фибробластами. Электронная микроскопия позволила установить, что эластические волокна в центре содержат аморфный компонент, а по периферии - микрофибриллярный. По прочности эластические волокна уступают коллагеновым.

Функция: определяет эластичность и растяжимость соедипительной ткани.

Ретикулярные волокна относятся к типу коллагеновых волокон, но отличаются меньшей толщиной, ветвистостью и анастомозами. Содержат повышенное количество углеводов, которые сингезируются ретикулярными клетками и липидов. Устойчивы к действию кислот и щелочей. Образуют трехмерную сеть (ретикулум), откуда и берут свое название.

Основное вещество - это студнеобразная гидрофильная среда, в образовании которой важную роль играют фибробласты. В его состав входят сульфатированные (хондроитинсерная кислота, кератин-сульфат, и др.) и несульфатированныс (гиалуроновая кислота) гликозаминогликаны, которые обусловливают консистенцию и функциональные особенности основного вещества. Кроме указанных компонентов, в состав основного вещества входят лиииды, альбумины и глобулины крови, минеральные вещества (соли натрия, калия, кальция и др.).

Функция: транспорт метаболитов между клетками и кровью; механическая (связывание клеток и волокон, адгезия клеток и др.); опорная; защитная; метаболизм воды; регуляция ионного состава.

3. Плотная волокнистая соединительная ткань

Она характеризуется относительно большим количеством плотно расположенных волокон (коллагеновых), незначительным количеством клеточных элементов (фиброцитов, фибробластов) и основного вещества между ними.

В зависимости от характера расположения волокнистых структур эта ткань подразделяется на:

1. Плотную неоформленную соединительную ткань.

Располагается в дерме кожи и характеризуется неупорядоченным расположением волокон.

2. Плотную оформленную соединительную ткань.

Встречается в сухожилиях, связках, фиброзных мембранах и характеризуется строго упорядоченным расположением волокон.

Сухожилие состоит из толстых, плотно лежащих параллельных пучков коллагеновых волокон, разделенных фиброцитами, небольшим количеством фибробластов и основного вещества. Каждый пучок коллагеновых волокон называется пучком первого порядка. Несколько пучков первого порядка, окруженных тонкими прослойками рыхлой волокнистой соединительной ткани (эндотеноний), составляют пучки второго порядка. Из пучков второго порядка слагаются пучки третьего порядка, разделенные более толстыми прослойками рыхлой соединительной ткани (перитеноний). В крупных сухожилиях могут быть и пучки четвертого порядка. В перитенонии и эндотенонии проходят кровеносные сосуды и нервы.

4. Соединительная ткань со специальными свойствами

Эти ткани характеризуются преобладанием однородных клеток, с которыми обычно связано название данных разновидностей соединительной ткани.

К таким тканям относятся:

- Ретикулярная ткань - располагается в кроветворных органах (лимфатические узлы, селезенка, костный мозг). Состоит из:

а) ретикулярных клеток - отросчатых клеток, которые стыкуются друг с другом своими отростками и связаны с ретикулярными волокнами;

б) ретикулярных волокон, которые являются производными ретикулярных клеток. Но химическому составу близки к коллагеновым волокнам, но отличаются от них меньшей толщиной, ветвистостью и анастомозами. Иод электронным микроскопом фибриллы ретикулярных волокон имеют не всегда четко выраженную исчерченность. Волокна и отростчагые клетки образуют рыхлую сеть, в связи с чем эта ткань получила свое название.

Функции: образует строму кроветворных органов и создает микроокружение для развивающихся в них клеток крови.

- Жировая ткань -- это скопления жировых клеток, встречающихся во многих органах. Различают две разновидности жировой ткани:

А) Белая жировая ткань; эта ткань широко распространена в организме человека и располагается под кожей, особенно в нижней части брюшной стенки, на ягодицах, бедpax, где образует подкожный жировой слой, в сальнике и др. Эта жировая ткань более или менее отчетливо делится прослойками рыхлой волокнистой соединительной ткани на дольки. Жировые клетки внутри долек довольно близко прилегают друг к другу. Форма жировых клеток шаровидная, они содержат одну большую каплю нейтрального жира (триглицеридов), занимающую всю центральную часть клетки и окруженную тонким цитоплазматическим ободком, в утолщенной части которого лежит ядро. Кроме того, в цитоплазме адипоцитов может находиться в небольших количествах холестерин, фосфолипиды, свободные жирные кислоты и др.

Функции: трофическая; терморегуляция; депо эндогенной воды; механическая защита.

Б) Бурая жировая ткань обнаружена у новорожденных детей и у некоторых животных на шее, около лопаток, за грудиной, вдоль позвоночника, под кожей и между мышцами. Она состоит из жировых клеток, густо оплетенных гемокапиллярами. Жировые клетки бурой жировой ткани имеют полигональную форму, в центре располагается 1-2 ядра, а в цитоплазме в виде капель - множество мелких жировых включений. По сравнению с клетками белой жировой ткани здесь обнаруживается значительно больше митохондрий. Бурый цвет жировым клеткам придают железосодержащие пигменты митохондрий -- цитохромы.

Функция: принимает участие в процессах теплопродукции.

- Слизистая ткань встречается только у зародыша, в частности в пупочном канатике. Построена из: клеток, представленных в основном мукоцитами, и межклеточного вещества. В нем в первой половине беременности в большом количестве обнаруживается гиалуроновая кислота.

Функция: защитная (механическая защита).

Пигментная ткань - к ней относятся соединительнотканные участки кожи в области сосков, в мошонке, около анального отверстия, а также в сосудистой оболочке и paдужке глаза, родимых пятнах. В этой ткани содержится много пигментных клеток -- меланоцитов.

Тема 6. Скелетные соединительные ткани

План

1. Хрящевые ткани (гистогенез, классификация, строения)

2. Костная ткань (остеогенез, строение, рост трубчатых костей, регенерация)

1. Хрящевые ткани (гистогенез, классификация, строения)

К скелетным тканям относят:

- Хрящевые ткани.

- Костные ткани.

Функции скелетных соединительных тканей: опорная; защитная (механическая); принимают участие в водносолевом обмене веществ.

Хрящевые ткани

Хрящевые ткани входят в состав ряда органов дыхательной системы, суставов, межпозвопковых дисков и др.

Хондрогистогснез. Развитие хрящевой ткани осуществляется как у эмбриона (источником является мезенхима), так и в постэмбриональном периоде при регенерации.

Строение. В хрящевой ткани содержится около 70-80% воды, 10-15% органических веществ и 4-7% солей. Собственно хрящевая ткань не имеет кровеносных сосудов, а питагельные вещества диффундируют из окружающей ее надхрящницы. Все хрящевые ткани состоят из:

А. Хрящевых клеток, которые, в свою очередь, подразделяются на;

Хондробласты - молодые уплощенные клетки, располагающиеся в глубоких слоях надхрящницы хряща. Их цитоплазма имеет хорошо развитую гранулярную и агранулярную эндоплазматическую сеть, комплекс Гольджи.

Функция: способны к пролиферации и синтезу межклеточного вещества хряща, при их участии происходит периферический (аппозиционный) рост хряща. Хондробласты в процессе развития хряща превращаются в хондроциты.

- Хондроциты - основной вид клеток хрящевой ткани. Они имеют овальную, округлую или полигональную форму. Расположены в межклеточном веществе в особых полостях (лакунах) в одиночку или группами. Группы клеток, лежащие в общей полости, называются изогенными (они происходят путем деления одной клетки). За счет увеличения численности этих клеток осуществляется внутренний (интсрстициальный) рост хрящевой ткани.

Б. Межклеточного вещества, которое содержится в большом количестве и представлено:

основным веществом (его органические компоненты состоят главным образом из белков, липидов, гликозами-ногликанов и протсогликанов.

волокнами - коллагеновыми и эластическими.

Межклеточное вещество обладает высокой гидрофильностью, что обусловливает его высокий тургор, плотность и способствует диффузии питательных веществ, воды, солей и многих метаболитов.

Классификация. В связи со структурнофункциональными особенностями строения межклеточного вещества различают три вида хрящевой ткани:

А) Гиалиновая хрящевая ткань. Ее называют также стекловидной в связи с прозрачностью и голубовато-белым цветом. У взрослых она встречается в местах соединения ребер с грудиной, в гортани, в воздухоносных путях, на суставных поверхностях костей.

Строение. Гиалиновый хрящ покрыт надхрящницей. В ней выделяют два слоя:

- наружный - состоящий из волокнистой соединительной ткани с кровеносными сосудами;

- внутренний - преимущественно клеточный, содержит хондробласты.

Под надхрящницей в поверхностном слое хряща располагаются веретеновидной формы молодые хондроциты. В более глубоких слоях хондроциты приобретают овальную форму. В связи с тем, что синтетические и секреторные процессы у этих клеток ослабляются, они после деления не расходятся, а лежат компактно, образуя так называемые изогенные группы (состоят из 2-4 хондроцитов), окруженные капсулой из коллагеновых волокон. Между одиночными и изогенными группами хондроцигов располагается межклеточное вещество, состоящее из:

основного (аморфного) вещества, в составе которого много липидов, гликогена и хондроитинсульфатов;

волокон (коллагеновых), имеющих разную направленность.

Б) Эластическая хрящевая ткань. Она располагается в ушной раковине, рожковидных и клиновидных хрящах гортани и др. Она имеет желтоватый цвет и не такая прозрачная, как гиалиновая.

По общему плану строения эластический хрящ сходен с гиалиновым. Снаружи он покрыт надхрящницей. Под надхрящницей в капсулах (из коллагеновых волокон) поодиночке или образуя изогеиные группы, располагаются молодые хондроциты. Между изогенными группами хондроцитов располагается межклеточное вещество, состоящее из: основного (аморфного) вещества, в состав которого входит меньше, чем гиалиновом, липидов, гликогена и хондроитинсульфатов; волокон (преимущественно эластических).

Одним из главных отличительных признаков эластичсского хряща является то, что в нем никогда не происходит обызвествления.

В) Волокнистая хрящевая ткань. Последняя встречается между позвонками в полуподвижных сочленениях и в местах, где совершается переход волокнистой соединительной ткани (сухожилия, связок) в гиалиновый хрящ, где ограниченные движения сопровождаются сильными натяжениями.

В строении данной хрящевой ткани можно выделить два компонента:

а) гиалиновый - в нем содержатся полости, в которых заключены хондроциты. располагающиеся поодиночке или образующие изогенные группы. Между клетками располагается межклеточное вещество с его компонентами;

б) сухожильный - содержащий сухожильные клетки, а в межклеточном веществе располагаются параллельно направленные коллагеновые волокна, которые постепенно разрыхляются и без какой-либо границы переходят в гиалиновый хрящ.

Возрастные изменения. По мере старения организма в гиалиновой хрящевой ткани местами в межклеточном веществе обнаруживаются отложения солей кальция («омеление хряща»), вследствие чего хрящ становится мутным, непрозрачным, приобретает твердость и ломкость.

Регенерация. Физиологическая регенерация хрящевой ткани осуществляется за счет хондробластов надхрящницы и идет очень медленно.

2. Костная ткань

Костные ткани - специализированный тип соединительной ткани с высокой минерализацией межклеточного вещества. Из этих тканей построены кости скелета.

Развитие кости (остеогенез)

Различают:

А) Эмбриональный остеогенез.

У эмбриона костная ткань развивается из мезенхимы двумя способами:

1). Прямой остеогистогенез (непосредственно из мезенхимы). Этим способом развиваются грубоволокнистая (ретикулофиброзная) костная ткань при образовании плоских костей. Такой процесс наблюдается в основном в течение первою месяца внутриутробного развития и протекает в четыре стадии:

а) стадия образования остеогенного островка. Происходит очаговое размножение мезенхимных клеток и формирование в этом очаге сосудов (васкуляризация);

б) стадия остеоида. Осуществляется дифференцировка из мезенхимных клеток остеобластов, располагающихся по поверхности островка и остеопитов - в глубине островка. Остеобласты образуют оксифильное межклеточное вещество с коллагеновыми фибриллами;

в) стадия кальцификации остеоида. В эту стадию пропитывание солями кальция (кристаллы гидроксиапатита) межклеточного вечества. В результате кальцификации образуются костные перекладины, или балки, пространства между которыми заполняется волокнистой соединительной тканыо с проходящими в ней кровеносными сосудами.

г) стадии перестройки грубоволокнистой костной ткани в пластинчатую, связанную с ростом капилляров и образованием остеонов.

2). Непрямой остеогистогенез (из мезенхимы на месте ранее развившейся хрящевой модели кости) - на 2-м месяце эмбрионального развития в местах будущих трубчатых костей закладывается из мезенхимы хрящевой зачаток (гиалиновый хрящ, покрытый надхрящницей), который очень быстро принимает форму будущей кости.

Б) Постэмбриональный остеогистогенез - осуществляется при регенерации.

Строение. Костные ткани состоят из:

А. Клеток:

- Остеоциты - преобладающие по количеству клетки костной ткани, утратившие способность к делению. Они имеют отростчатую форму, бедны органеллами. Располагаются в костных полостях, или лакунах, которые повторяют контуры остеоцита. Отростки остеоцита проникают в канальцы кости и играют роль в ее трофике.

- Остеоблаеты - молодые клетки, создающие костную ткань. В кости они встречаются в глубоких слоях надкостницы, в местах образования и регенерации костной ткани. Эти клетки бывают различной формы (кубической, пирамидальной или угловатой), содержат одно ядро, а в цитоплазме хорошо развитую гранулярную эндоплазматическую сеть, митохондрии и комплекс Гольджи.

- Остеокласты - клетки, способные разрушить обызвествленный хрящ и кость. Они имеют крупные размеры (диаметр их достигает 90 мкм), содержат от 3 ДО нескольких десятков ядер. Цитоплазма слабобазофильна, богата митохондриями и лизосомами. Гранулярная эндоплазматическая сеть развита относительно слабо.

Б. Межклеточного вещества, состоящего из:

основного вещества, где содержится относительно небольшое количество хондроитинссриой кислоты и много лимонной и других кислот, образующих комплексы с кальцием (аморфный фосфат кальция, кристаллы гидроксиапатита).

коллагеновых волокон, образующих небольшие пучки.

В зависимости от расположения коллагеновых волокон в межклеточном веществе костные ткани классифицируют на:

- Ретикулофиброзную костную ткань. В ней коллаге-новые волокна имеют беспорядочное расположение. Такая ткань встречается главным образом у зародышей. У взрослых ее можно обнаружить на месте черепных швов и в местах прикрепления сухожилий к костям.

- Пластинчатую костную ткань. Это наиболее распрос граненная разновидность костной ткани во взрослом организме. Она состоит из костных пластинок, образованных костными клетками и минерализованным аморфным веществом с коллаг еновыми волокнами, ориентированными в определенном направлении. В соседних пластинках волокна обычно имеют разное направление, благодаря чему достигается большая прочность пластинчатой костной ткани. Из этой ткани построены компактное и губчатое вещество большинства плоских и трубчатых костей скелета.

Гистологическое строение трубчатой кости

Она состоит из эпифизов и диафиза. С наружи диафиз покрыт надкостницей, или периостом. В надкостнице различают два слоя: наружный (волокнистый) - образован в основном волокнистой соединительной тканыо и внутренний (клеточный) - содержит клетки остеобласты. Через надкостницу проходят питающие кость сосуды и нервы, а также под разными углами проникают коллагеновые волокна. Чаще всего эти волокна разветвляются только в наружном слое общих пластинок. Надкостница связывает кость с окружающими тканями и принимает участие в ее трофике, развитии, росте и регенерации.

Компактное вещество, образующее диафиз кости, состоит из костных пластинок, располагающихся в определенном порядке, образуя три слоя:

Наружный слой общих пластинок. В нем пластинки не образуют полных колец вокруг диафиза кости. В этом слое залегают прободающие каналы, по которым из надкостницы внутрь кости входят сосуды.

Средний, остеонный слой - образован концентрически наслоенными вокруг сосудов костными пластинками. Такие структуры называются остеонами, а пластинки, их образующие - остеонпые пластинки. Остеоны являются структурной единицей компактного вещества трубчатой кости. Каждый остеон отграничен от соседних остеонов так называемой спайной линией. В центральном канале остеона проходят кровеносные сосуды с сопровождающсй их соединительной тканью. Вес остеоны в основном расположены параллельно длинной оси кости. Каналы остеонов анастомозируют друг с другом. Сосуды, расположенные в каналах остеонов, сообщаются друг с другом, с сосудами костного мозга и надкостницы. Кроме пластинок остеонов в этом слое располагаются также вставочные пластинки (остатки старых разрушенных остеонов), которые лежат между остеонами.

Внутренний слой общих пластинок хорошо развит только там, где компактное вещество кости непосредственно граничит с костномозговой полостью.

Изнутри компактное вещество диафиза покрыто эндостом, имеющем такое же строение, как и периост.

Рост трубчатых костей - процесс очень медленный. Он начинается с ранних эмбриональных стадий. В течение всего периода роста кость увеличивается как в длину, так и в ширину. Рост трубчатой кости в длину обеспечивается наличием метаэпифизарной хрящевой пластинки роста, в которой проявляются два противоположных гистогенетических процессах. Один - это разрушение эпифизарной пластинки и другой, противоположный ему, - постоянное пополнение хрящевой ткани путем новообразования. Однако, с течением времени процессы разрушения хрящевой пластинки начинают преобладать над процессами новообразования в ней, вследствие чего хрящевая пластинка истончается и исчезает.

Регенерация. Физиологическая регенерация костной ткани осуществляется за счет остеобластов надкостницы. Однако этот процесс идет очень медленно.

Тема 7. Мышечные ткани

План

1. Классификация мышечной ткани

2. Скелетная (поперечнополосатая) мышечная ткань

3. Сердечная мышечная ткань

4. Гладкая мышечная ткань

1. Классификация мышечной ткани

Мышечная ткань - важнейшая из всех гистологических тканей, составляющих мясную продукцию животных.

В живом организме мышечные ткани специализированы для сократительных процессов и выполняют сложную работу: приводят в движение рычаги скелета, осуществляя тем самым передвижение животных, обеспечивают ритмичную деятельность сердца и циркуляцию крови в сосудах, активно участвуют в перистальтике пищеварительного тракта, в дыхательном процессе, в функционировании сфинктеров, способствуют поддержанию тонуса организма, его формы и позы.

Таким образом, мышечные ткани осуществляют ряд произвольных и непроизвольных движений всевозможных органов и тканей, а также всего организма, расходуя при этом большое количество энергии. Поэтому, эти ткани всегда снабжены густой сетью кровеносных сосудов, беспрерывно доставляющих питательные и энергетические ресурсы, необходимые для синтеза и восстановления веществ, участвующих в образовании двигательных реакций. Сокращение мышц вызывается их возбуждением, поэтому к мышцам подходят многочисленные нервы и нервные окончания.

Кроме собственно-мышечных структур в состав мышечной ткани входят соединительно-тканные элементы.

Для мышечных тканей характерны удлиненная форма составляющих их структурных элементов - миоцитов и мышечных волокон и сократительного аппарата, представленного системой тонких нитей (миофиламентов), состоящих из белков актина и миозина. Эти тонкие короткие нити расположены равными чередующимися рядами внутри миофибрилл, специфических органелл в мышечных волокнах и клетках мышечных тканей.

Классификация мышечных тканей

Мышечные ткани делятся на две основные группы: неисчерченные (гладкие) и исчерченные (поперечно-полосатые).

По источнику эмбрионального развития гладкие мышечные ткани подразделяются на 3 подгруппы (схема 1).

Схема 1

Гладкие мышечные ткани

мезенхимные (в сосудах и внутренних органах)

эктодермальные (миоэпителиальные клетки слюнных, молочных, слезных и потовых желез)

нейральные (гл. мышечная ткань радужной оболочки глаз и ресничного тела)

Исчерченные (поперечно-полосатые)

скелетные (миотомного) происхождения)

сердечные (целомического происхождения), из клеток, выстилающих полость целома, формируются мышцы сердца.

Скелетная ткань - это сократительная ткань туловища, головы, конечностей, глотки, гортани, верхней половины пищевода (у жвачных и хищных животных всего пищевода), языка, жевательных мышц, диафрагмы, глазного яблока, уха и др.

Эта ткань является основой мясной продукции животных и составляет у крупного и мелкого рогатого скота от 45 до 65%, а у свиней от 35 до 55% массы туши. На это соотношение влияет возраст, порода, упитанность животных и др. факторы.

Основная функция этой ткани - движение животного в пространстве и движение отдельных частей тела. Кроме того, она является основным источником тепла в организме, т.к. 30-40% энергии мышечного сокращения используется в виде механической работы, остальное превращается в тепловую энергию. Скелетную мышечную ткань относят к произвольной мускулатуре, т.к. ее сокращение контролируется волей животного.

В основе строения поперечно-полосатой мышечной ткани лежат мышечные волокна (симпласты), имеющие вид тонких длинных цилиндров с тупыми или слегка заостренными концами.

Длина волокон колеблется от нескольких мм до 13-15 см диаметр от 10 до 150 мкм. Объединенные с помощью прослоек рыхлой соединительной ткани пучки таких волокон составляют мышцы животных. Волокна в пучках лежат продольно в одном направлении.

В каждом волокне различают наружную оболочку (сарколемму), цитоплазму или саркоплазму, многочисленные овальные ядра и белковые сократимые нити (миофибриллы).

Оболочка волокна (сарколемма) представляет собой тонкую прозрачную пленку, состоящую из двух слоев, которые видны только с помощью электронной микроскопии. Наружный слой оболочки представлен базальной мембраной. Второй слой сарколеммы является собственной оболочкой волокна или плазмолеммой. С помощью этого слоя осуществляется активный процесс обмена веществ между мышечным волокном и окружающей средой.

Каждое волокно одето тонкой соединительно-тканной оболочкой - эндомизием. Волокна эндомизия (коллагеновые и эластические) вплетаются в базальную мембрану. Несколько мышечных волокон объединяются в группы, разделенные более широкими соединительно-тканными прослойками, называемыми перимизием. Мышца снаружи покрыта эпимизием или фасцией.

В эндомизии расположены лимфатические сосуды и питающие кровеносные сосуды, образующие сеть капилляров вокруг каждого мышечного волокна. В перемизии могут откладываться жировые клетки, придавая мясу мраморность.

На поверхности мышечных волокон находятся специальные нервные окончания - моторные бляшки, через которые поступают нервные импульсы. Проведение их к миофибриллам обеспечивается поперечными трубочками, образованными глубокими впячиваниями плазмолеммы внутрь волокна. Эти трубки расположены через равные промежутки по длине мышечного волокна. Под плазмолеммой находятся многочисленные ядра.

В периферической части саркоплазмы у полюсов ядер расположены участки эндоплазматической сети, комплекс Гольджи, митохондрии.

В центральной части симпластов расположены исчерченные миофибриллы, между которыми находятся митохондрии, канальцы агранулярной эндоплазматической сети и включения гликогена, необходимого для обеспечения процесса сокращения энергией.

В саркоплазме мышечных волокон имеется растворимый пигментный белок - миоглобин, способный связывать кислород и отдавать его по мере необходимости. Мясо, содержащее много миоглобина, приобретает коричневый оттенок.

Общее количество миофибрилл в различных волокнах различно. В некоторых волокнах их очень много. Волокна с большим количеством миофибрилл обладают большой силой и вместе с тем быстро утомляются, т.к. в них небольшое количество жидкой саркоплазмы, поставляющей энергетические ресурсы для сократительных реакций миофибрилл. Волокна с большим количеством миофибрилл делают мясо более светлым, т.к. в таких волокнах мало саркоплазмы, содержащей красноватый пигмент миоглобин. Волокна, составляющие мышцу, с небольшим содержанием миофибрилл имеют красноватый оттенок. Эти мышцы меньше утомляются, но обладают меньшей силой.

Мышцы молодых животных окрашены менее интенсивно, чем старых, так как в их волокнах содержится меньше миоглобина.

При длительном воздействии кислорода воздуха на мясо во время хранения мясных продуктов двухвалентное железо молекул миоглобина окисляется в 3-х валентное, что придает мясу коричневый оттенок.

По содержанию миоглобина и другим признакам в мышцах различают три типа мышечных волокон: белые, красные и промежуточные. Белые бедны миоглобином, имеют меньше митохондрий, содержат большое количество гликогена, значительное число миофибрилл и хорошо развитую саркоплазматическую сеть. Мышцы с преобладанием белых волокон быстро сокращаются и быстро утомляются. Источником АТФ в белых волокнах служит анаэробная фаза клеточного дыхания (гликолиз). Противоположные признаки характерны для красных волокон. В их саркоплазме содержится больше миоглобина, много митохондрий, слабо развита эндоплазматическая сеть, мало гликогена, и сравнительно немного миофибрилл. Источником АТФ служит аэробная фаза клеточного дыхания. Мышцы с преобладанием красных волокон сокращаются в десятки раз медленнее. Сокращение их непрерывное и длительное. Такие мышцы в организме выполняют большую физическую работу.

В разных мышцах количественное соотношение между тремя типами волокон различное, и оно запрограммировано при эмбриональном развитии мышцы. У домашних кур грудные мышцы мало используются (куры почти не летают) и в них преобладают белые мышечные волокна и, наоборот - мышцы ног красные.

Наибольший объем в мышечном волокне занимают миофибриллы. Длина их равна длине волокон. Их количество в разных волокнах различное. В узких пространствах между миофибриллами находятся цистерны эндоплазматической сети и промежуточные микрофиламенты из белка десмина. По длине миофибрилл чередуются темные и светлые поперечные полоски (диски).

Темные диски всех миофибрилл в волокне расположены против темных, а светлые - против светлых, что и придает всему волокну в целом поперечную исчерченность.

Структурными и функциональными единицами миофибрилл являются саркомеры. Длина их около 4 мкм. В каждый саркомер входят две половинки светлых дисков и целый темный.

Саркомеры состоят из тончайших белковых волоконец - миофиламентов (протофибрилл). Различают два из вида: толстые - из белка миозина, и тонкие - их белка актина. Актиновые миофиламенты образованы двойной спиралью глобулярных белков. Внутри этих спиралей находятся другие белки - тропомиозин и торопомин, которые оказывают регулирующее влияние на актин. Диаметр актиновых нитей ?7 нм.

Миозиновые нити образованы молекулами белка, также закрученными в виде спирали. В них различают хвостовые части и головки. Головки подвижны и могут подсоединяться к актиновым нитям, втягивая их внутрь. Хвостами молекулы соединяются и образуют толстые нити диаметром 10-12 нм.

Каждая миозиновая нить состоит из 350-500 молекул

Миозиновые нити составляют темный диск. Каждую толстую миозиновую нить окружают шесть тонких актиновых нитей. Тонкие нити вдвигаются при сокращении между толстыми. И если мышечное волокно расслаблено, то светлые диски состоят только из тонких актиновых протофибрилл, а темные диски состоят только из одних толстых миозиновых протофибрилл. Если мышечное волокно сокращено, то темные диски в ширине не меняются, а светлые сужаются, т.к. тонкие нити вдвигаются между толстыми. Таким образом, мышечное волокно сокращается с помощью протофибрилл (миофиламентов). Процесс сокращения осуществляется не за счет образования складчатых миофибрилл (как предполагали до изобретения электронного микроскопа), а за счет скольжения актиновых и миозиновых нитей одна возле другой. Одну толстую нить окружают 6 тонких.

Для образования акто-миозинового комплекса необходимы ионы Са++, которые поступают из депо внутри клетки (эндоплазматического ретикулума) и извне, через определенные участки плазмолеммы, где расположены специфические белки, восприимчивые к ионам Са+2. Для запуска сокращения необходимы специальные белки (кальмодулин) и ферменты (киназа). Саркомеры разграничены друг от друга Z-полосками, фиксирующими актиновые нити. Миозиновые нити фиксируются М-полоской, от которой с боков находится более светлый участок, куда не доходят актиновые нити (Н-зона). Таким образом, светлые и темные полоски вследствие их фиксированного состояния на одном уровне создают рисунок поперечной исчерченности. Темные диски называют анизатропными, а светлые - изотропными.

В мышечных волокнах млекопитающих поперечные трубочки (Т_системы) расположены в саркомерах на границе темных и светлых дисков. Концы поперечных трубочек внутри волокна контактируют с терминальными цистернами саркоплазматической сети и, вместе с последними, образуют триады. Когда волокно получает от T-трубочек нервный импульс, то депонированные в цистернах саркоплазматической сети ионы кальция выходят из них, проникают в миофибриллы и запускают процесс сокращения. Во время расслабления мышечных волокон ионы кальция перекачиваются обратно в полость эндоплазматической сети.

2. Скелетная (поперечнополосатая) мышечная ткань

Скелетная мышечная ткань развивается из миотомов сегментированного отдела мезодермы. На ранней стадии развития миотомы состоят из плотно расположенных мышечных клеток - миобластов. Цитоплазма этих клеток имеет тонковолокнистое строение, свидетельствующее о развитии сократительных белков. Уже на этой стадии миобласты способны к сокращению. Они интенсивно делятся и перемещаются в участки расположения будущих мышц. Вскоре в цитоплазме миобластов можно различать единичные сократительные нити - миофибриллы, построенные из сократительных белков. Ядра делятся интенсивнее клеток и миобласты становятся многоядерными. Увеличиваясь в длину, они приобретают форму волокон (симпластов). Симпласты могут образовываться и путем слияния миобластов торцевыми концами. Образуются мышечные трубочки, которые разделяются продольно на мышечные волокна.

Часть миобластов не проходят указанный путь, и сохраняются в виде удлиненных одноядерных малодифференцированных клеток, расположенных между плазмолеммой и базальной мембраной. Такие клетки называются миосателлитами. Считают, что они могут быть источником образования новых волокон в течение всей жизни животного. Кроме того, новые волокна могут образовываться путем расщепления толстых волокон и увеличения количества миофибрилл в тонких волокнах.

Возрастные и другие изменения скелетной мышечной ткани

С возрастом в мышечных тканях происходит увеличение размеров волокон. Диаметр волокон увеличивается за счет прибавления протофибрилл (мифиламентов), по бокам миофибрилл. В длину волокно растет за счет присоединения протофибрилл к концам миофибрилл. За счет продольного расщепления увеличивается и количество миофибрилл. Эти процессы происходят и в эмбриональный и постэмбриональный периоды. За это время мышечные волокна утолщаются в 2-4 раза. У молодых животных прослойки рыхлой соединительной ткани не содержат жира.

С ростом животного увеличивается количество пучков волокон путем врастания внутрь соединительно-тканных прослоек. С возрастом внутри мышц рыхлая соединительная ткань уплотняется, и мясо становится более жёстким. У животных скороспелых пород мясного типа мышечные волокна более толстые, в межпучковой соединительной ткани (премизии) чаще встречаются жировые клетки. При откорме утолщаются мышечные волокна, между ними появляются жировые клетки. Недостаток кормления приводит к уменьшению диаметра мышечных волокон на 20-35%.

3. Сердечная мышечная ткань

Сердечная мышечная ткань формирует среднюю оболочку (миокард) предсердий и желудочков сердца и представлена двумя разновидностями рабочей и проводящей.

Рабочая мышечная ткань состоит из клеток кардиомиоцитов, важнейшей особенностью которых является наличие совершенных контактных зон. Соединяясь друг с другом, торцевыми концами они формируют структуру, сходную с мышечным волокном. На боковых поверхностях кардиомиоциты имеют ответвления. Соединяясь концами с ответвлениями соседних кардиомиоцитов они образуют анастомозы. Границами между торцами соседних кардиомиоцитов являются вставочные диски с прямыми или ступенчатыми контурами. В световом микроскопе они имеют вид поперечных темных полосок. С помощью вставочных дисков и анастомозов сформирована единая структурно-функциональная сократительная система.

При электронной микроскопии выявлено, что в области вставочных дисков одна клетка вдается в другую пальцевидными выступами, на боковых поверхностях которых имеются десмосомы, что обеспечивает высокую прочность сцепления. На концах пальцевидных выступов обнаружены щелевидные контакты, через которые нервные импульсы быстро распространяются от клетки к клетке без участия медиатора, синхронизируя сокращение кардиомиоцитов.

Сердечные миоциты - это одноядерные, иногда двухядерные клетки. Ядра расположены в центре в отличие от скелетных мышечных волокон. В околоядерной зоне расположены компоненты аппарата Гольджи, митохондрии, лизосомы, гранулы гликогена.

Сократительный аппарат миоцитов, так же как и в скелетной мышечной ткани, состоит из миофибрилл, которые занимают периферическую часть клетки. Их диаметр от 1 до 3-х мкм.

Миофибриллы сходны с миофибриллами скелетной мышечной ткани. Они также построены из анизотропных и изотропных дисков, что также обуславливает поперечную исчерченность.

Плазмолемма кардиомиоцитов на уровне Z-полосок инвагинирует вглубь цитоплазмы, образуя поперечные трубочки, отличающиеся от скелетной мышечной ткани большим диаметром и наличием базальной мембраны, которая покрывает их снаружи, как и сарколемму. Волны деполяризации, идущие с плазмолеммы внутрь сердечных миоцитов, вызывают скольжение актиновых миофиламентов (протофибрилл) по отношению миозиновым, обуславливая сокращение, как и в скелетной мышечной ткани.

Т-трубочки в сердечных рабочих кардиомиоцитах образуют диады, то есть связаны с цистернами саркоплазматической сети только с одной стороны. Рабочие кардиомиоциты имеют длину 50-120 мкм, ширину 15-20 мкм. Количество миофибрилл в них меньше, чем в мышечных волокнах.

Сердечная мышечная ткань содержит много миоглобина, поэтому темно-красного цвета. В миоцитах много митохондрий и гликогена, т.е.: энергию сердечная мышечная ткань получает и при распаде АТФ, и в результате гликолиза. Таким образом, сердечная мышца работает непрерывно всю жизнь, из-за мощной энергетической оснащенности.

Интенсивность и частота сокращений сердечной мышцы регулируются нервными импульсами.

В эмбриогенезе рабочая мышечная ткань развивается из особых участков висцерального листка несегментированной мезодермы (спланхнотома). В сформировавшейся рабочей мышечной ткани сердца отсутствуют камбиальные клетки (миосателлиты), поэтому при повреждении миокарда в травмированной зоне кардиомиоциты погибают и на месте повреждения развивается волокнистая соединительная ткань.

Проводящая мышечная ткань сердца находится в составе комплекса образований синусно-предсердного узла, расположенного в устье краниальной полой вены, предсердно-желудочкового узла, лежащего в межпредсердной перегородке, предсердно-желудочкового ствола (пучка Гиса) и его разветвлений, находящихся под эндокардом межжелудочковой перегородки и в соединительно-тканных прослойках миокарда.

Все компоненты этой системы образованы атипичными клетками, специализированными либо на выработке импульса, распространяющемуся по всему сердцу и вызывающего сокращение его отделов в необходимой последовательности (ритме), либо в проведении импульса к рабочим кардиомиоцитам.

Для атипичных миоцитов характерен значительный объем цитоплазмы, в которой немногочисленные миофибриллы занимают периферическую часть и не имеют параллельной ориентации, вследствие чего этим клеткам не свойственна поперечная исчерченность. Ядра расположены в центре клеток. Цитоплазма богата гликогеном, но в ней мало митохондрий, что свидетельствует об интенсивном гликолизе и низком уровне аэробного окисления. Поэтому клетки проводящей системы более устойчивы к кислородному голоданию, чем сократительные кардиомиоциты.

В составе синусно-предсердного узла атипичные кардиомиоциты более мелкие, округлой формы. В них формируются нервные импульсы и они относятся к главным водителям ритма. Миоциты предсердно-желудочкового узла несколько крупнее, а волокна пучка Гиса (волокна Пуркинье) состоят из крупных округлых и овальных миоцитов с эксцентрично расположенным ядром. Диаметр их в 2-3 раза больше, чем рабочих кардиомиоцитов. Электронно-микроскопически выявлено, что в атипичных миацитах слаборазвита саркоплазматическая сеть, отсутствует система Т-трубочек. Клетки соединяются не только концами, но и боковыми поверхностями. Вставочные диски устроены более просто и не содержат пальцевидных соединений, десмосом и нексусов.

4. Гладкая мышечная ткань

Гладкая мышечная ткань образует мышечную оболочку трубкообразных органов пищеварения, дыхания, выделения, размножения, находится в стенках кровеносныхсосудов, протоков желез, в селезенке, коже и других органах.

Специализированные сократительные гладкомышечные ткани входят в состав потовых, слюнных, молочных желез. Сократительные клетки этих желез в своей цитоплазме содержат миофиламенты, построенные из сократительных белков и развиваются из эпителиальных клеток. Другие разновидности специализированных сократительных тканей имеют нейроглиальное происхождение, суживают зрачок и располагаются в радужной оболочке глаза.

Гладкая мышечная ткань относится к ткани с непроизвольным сокращением, её функцию контролирует вегетативная нервная система. Сокращения гладких мышц могут быть медленными, но достигать большой силы сжатия.

Основной структурной единицей гладкой мышечной ткани являются клетки-миоциты. Они удлиненной веретеновидной формы с заостренными концами. Их длина от 20 до 200 мкм (в беременной матке до 500 мкм), а толщина 8-10 мкм. Ядро палочковидной формы находится в середине клетки. В цитоплазме, около полюсов ядра расположены органеллы: митохондрии, комплекс Гольджи, центросома, рибосомы, эндоплазматическая сеть и включения гликогена (энергетический резерв клетки). В преферической части цитоплазмы расположены миофиламенты. Нити актина и миозина не образуют миофибрилл или постоянных акто-миозиновых комплексов и расположены по-разному. Актиновые нити чаще имеют косое присоединение к плазмолемме с помощью особых плотных телец (прикрепительных дисков). Отдельные пучки актиновых нитей прикрепляются к плотным тельцам, расположенным в цитоплазме. Положение этих телец или дисков с обратной стороны закрепляется промежуточными филаментами.

Миозиновые нити в периоды расслабления миоцитов лежат в цитоплазме продольно или под углом к длинной оси клетки. В процессе сокращения актиновые и миозиновые нити смещаются навстречу друг другу и формируют акто-миозиновые комплексы. В результате клетка сокращается и приобретает неправильную форму. В фазе расслабления комплексы вновь распадаются. Поскольку актиновые и миозиновые нити лежат неупорядоченно, поперечная исчерченность в гладких миоцитах отсутствует.

В процессе сокращения, как было сказано, важную роль играют ионы Са++. Депо для них является гладкая эндоплазматическая сеть миоцита. Кроме того, ионы Са++ поступают извне через кальциевые каналы в цитолемме. В определенных участках плазмолеммы лежат специальные белки, воспринимающие и пропускающие внутрь ионы Са++. Ионы Са++ в комплексе с белком кольмодулином и ферментом киназой запускают процесс сокращения. Головки молекул миозина начинают двигаться и скользить вдоль нитей актина и осуществляется процесс сокращения.

С помощью электронного микроскопа было выявлено, что на концах гладких миоцитов имеются пальцевидные выпячивания, десмосомы и щелевидные контакты-нексусы. Плазмолемма миоцитов впячиваясь в цитоплазму, образует пузырьки (кавеолы), примыкающие к саркоплазматической сети. Предполагают, что эти пузырьки участвуют в проведении нервных импульсов, вызывающих выход ионов Са++ и процесс сокращения.

Функциональной единицей гладкой мышечной ткани является пучок из 10-15 миоцитов, связанных с одним нервным волокном. Благодаря тесной связи клеток с помощью десмосом и щелевых контактов все клетки пучка быстро реагируют на нервное раздражение, несмотря на то, что нервное окончание входит только в одну клетку.

Коллагеновые волокна, соединительно-тканных капсул (эндомизий) оплетают миоциты, вплетаются в базальную пластинку (мембрану) в наружный слой над сарколеммой и тем самым удерживают клетки от чрезмерного сжатия и растяжения.

Пучки отделены друг от друга прослойками соединительной ткани (перемизий), в которой проходят сосуды и нервы.

Гладкая мышечная ткань, иннервируется вегетативной нервной системой. Ее деятельность регулируется корой полушарий, но без участия сознания. Сокращения осуществляются непроизвольно и происходят медленно и ритмично (период сокращения от 3 до 5 минут).

Такой характер сокращения называют тоническим.

В стенках полых органов и сосудов пучки гладких миоцитов объединяются в пласты (продольные и циркулярные).

Гладкая мышечная ткань обладает большой силой, передвигая в кишечнике большие массы пищи, и обладает слабой утомляемостью. В стенке кишечника сокращение происходит 12 раз в минуту.

Отдельные пучки гладких миоцитов находятся в коже животных в виде мышц, поднимающих волос.

Происходит гладкая мышечная ткань внутренних органов и сосудов из мезенхимы, клетки которой дифференцируются в миобласты, а миобласты в миоциты, сохраняющие способность к делению на протяжении всего онтогенеза. Кроме того, гладкие миоциты могут образовываться из недеффиренцированных клеток соединительной ткани (адвентициальных), находящихся около кровеносных сосудов.

Тема 8. Нервная ткань

План:

1. Функции нервной ткани

2. Развитие нервной ткани

3. Морфология и функции нейронов и глиоцитов

4. Формирование и морфология нервных волокон

5. Нервные окончания синапсы и рефлекторные дуги

1. Функции нервной ткани

Нервная ткань является основой строения органов нервной системы, обеспечивающих регуляцию всех тканей и органов, их интеграцию в организме и связь с окружающей средой.

Организм животных находится под постоянным воздействием окружающей среды. С помощью специализированных структур нервной ткани обеспечивается возможность восприятия различных факторов, их анализа и выработки ответных реакций. С помощью элементов нервной ткани организм животных быстро приспосабливается (адаптируется) к изменяющимся условиям внешней и внутренней среды.

2. Развитие нервной ткани

Нервные клетки начинают развиваться на ранней стадии эмбриогенеза из нервной пластинки, сформированной из пласта эктодермальных клеток, расположенных на дорсальной поверхности зародыша.

Через стадию нервного желобка нервная пластинка замыкается в нервную трубку. После замыкания нервной трубки в ее стенке усиливается размножение клеток, затем клетки прекращают делиться и лизируют к наружней зоне трубки. Одни из них становятся предшественниками нейронов-нейробластами, другие предшественниками глиоцитов, сохраняющими способность к делению. Из передней части нервной трубки формируется нервная ткань головного мозга, из остальной - спинного мозга. При формировании нервной трубки часть клеток нервной пластинки не входит в ее состав и образует по бокам нервный гребень или ганглиозную пластинку из которой в дальнейшем формируются нейроны и глиоциты спинномозговых и вегетативных ганглиев, клетки мягкой мозговой и паутинных оболочек мозга, клетки мозгового вещества надпочечников, меланоциты кожи.

Кроме нервного гребня по бокам нервной трубки в краниальном отделе формируется нейральные плакоды в виде утолщений. Из них впоследствии развивается нейроны органов чувств.

В дальнейшем в нервной трубке дифференцируются четыре зоны: эпендимная, субвентрикулярная, плащевая и маргинальная.

Из плащевой или мантийной зоны формируется нейробласты и глиобласты, маргинальная (краевая) зона дает начало белому веществу, состоящему из аксонов нейробластов.

3. Морфология и функции нейронов и глиоцитов

Нервная ткань состоит из двух связанных между собой популяций клеток: нейронов и глиоцитов (нейроглии).

Нейроны обеспечивают основные функции нервной ткани: восприятие раздражения, возбуждение, формирование нервного импульса, передачу импульса рабочим органам (мышцам, железам).

В нейроне различают тело (перикарион), в котором располагается крупное ядро, хорошо развитая гранулярная эндоплазматическая сеть, аппарат Гольджи, другие органеллы и включения. От тела отходят отростки - один аксон (нейрит) и один или несколько дендритов, обычно ветвящихся. По числу отростков нейроны делят на: униполярные с одним отростком, биполярные - с двумя, мультиполярные - с тремя и более отростков. Один отросток аксон отводит нервный импульс от тела нейрона. Он относительно прямой в сравнении с дендритами и более длинный; не ветвится. У некоторых нейронов от аксонов под прямым углом отходят отростки (коллатерали). Дендриты несут воспринятое раздражение к телу нейрона.

...

Подобные документы

  • Онтогенез как процесс формирования организмов с момента образования половых клеток и оплодотворения или отдельных групп клеток до завершения жизни. Исторические предпосылки и этапы развития эмбриологии как науки. Развитие одноклеточных организмов.

    контрольная работа [140,7 K], добавлен 08.05.2011

  • История гистологии - раздела биологии, изучающего строение тканей живых организмов. Методы исследования в гистологии, приготовление гистологического препарата. Гистология ткани - филогенетически сложившейся системы клеток и неклеточных структур.

    реферат [24,3 K], добавлен 07.01.2012

  • Гистология как наука о происхождении, строении, функции и регенерации тканей живых организмов. Эволюционная эмбриология, развитие на примере млекопитающих. Критический период как период повышенной чувствительности организма к действию внешних факторов.

    реферат [20,3 K], добавлен 18.01.2010

  • Гистология - учение о развитии, строении, жизнедеятельности и регенерации тканей животных организмов и организма человека. Методы ее исследования, этапы развития, задачи. Основы сравнительной эмбриологии, науки о развитии и строении зародыша человека.

    реферат [9,9 K], добавлен 01.12.2011

  • Образование тканей из зародышевых листков (гистогенез). Понятие как стволовых клеток как полипотентных клеток с большими возможностями. Механизмы и классификация физиологической регенерации: внутриклеточная и репаративная. Виды эпителиальных тканей.

    реферат [19,6 K], добавлен 18.01.2010

  • Гистология — наука о строении, развитии и жизнедеятельности тканей животных организмов и общих закономерностях тканевой организации; понятие цитологии и эмбриологии. Основные методы гистологического исследования; приготовление гистологического препарата.

    презентация [1,5 M], добавлен 23.03.2013

  • Структура, физиологическое значение и возрастные особенности систем органов человеческого организма. Кровь и сердечно-сосудистая система. Нервная, пищеварительная, дыхательная, мочеполовая, эндокринная, опорно-двигательная, сенсорная, речевая системы.

    реферат [33,7 K], добавлен 06.12.2014

  • Основные концепции современной физиологии. Лимфатическая, дыхательная, пищеварительная системы. Обмен веществ и энергии. Физиология выделений и железы внутренней секреции. Строение нервной системы, высшая нервная деятельность. Система кровообращения.

    реферат [35,3 K], добавлен 01.08.2010

  • История систематического изучения закономерностей эволюции тканей. Теория параллелизма гистологических структур. Теория дивергентной эволюции тканей. Теория филэмбриогенеза в гистологии. Эпителиальная, производные мезенхимы, мышечная и нервная ткань.

    презентация [890,0 K], добавлен 12.11.2015

  • Млекопитающие - высший класс позвоночных и всего царства животных. Строение: скелет; мышечная, нервная, кровеносная, дыхательная, выделительная, пищеварительная системы; температура тела; размножение. Происхождение и развитие класса млекопитающих.

    реферат [2,7 M], добавлен 28.02.2008

  • Процесс зачатия, имплантации, зарождения человека. Описание фаз оплодотворения. Органы, которые развиваются в первую очередь. Характеристика основных периодов внутриутробного развития. Влияние вредных факторов окружающей среды на развитие плода.

    презентация [898,0 K], добавлен 24.07.2014

  • Изучение особенностей строения и основных этапов развития мужской половой системы, которая выполняет две функции: генеративную, связанную с выработкой половых клеток и эндокринную, которая заключается в выработке половых гормонов. Процесс сперматогенеза.

    реферат [13,8 K], добавлен 04.12.2011

  • Основные системы органов животных: опорно-двигательная, пищеварительная, выделительная, кровеносная, дыхательная, нервная, органы чувств, эндокринная и половая: назначение, состав, функции по обеспечению жизнедеятельности организма, характеристика.

    контрольная работа [14,0 K], добавлен 21.11.2011

  • История зарождения гистологии как науки. Гистологические препараты и методы их исследования. Характеристика этапов приготовления гистологических препаратов: фиксация, проводка, заливка, резка, окрашивание и заключение срезов. Типология тканей человека.

    презентация [1,6 M], добавлен 20.11.2014

  • Образование и условия функционирования нервых тканей. Строение, особености их работы, принципы построения в теле. Расположение и функции нервных клеток, особенности их регенирации. Роль синапсов как соединений между ними. Чувствительные нервные окончания.

    реферат [10,7 K], добавлен 04.12.2011

  • Координация нервной системой деятельности клеток, тканей и органов. Регуляция функций организма, взаимодействие его с окружающей средой. Вегетативная, соматическая (сенсорная, моторная) и центральная нервная система. Строение нервных клеток, рефлексы.

    реферат [27,6 K], добавлен 13.06.2009

  • Опорно-трофические (соединительные) ткани - клетки и межклеточное вещество организма человека, их морфология и функции: опорная, защитная, трофическая (питательная). Виды тканей: жировая, пигментная, слизистая, хрящевая, костная; специальные свойства.

    реферат [20,9 K], добавлен 04.12.2011

  • Основы гистологической техники. Цитохимические методы исследования клеток и тканей. Наружная цитоплазматическая мембрана, типы и происхождение пластид, их строение и функции. Мейоз (редукционное деление клетки), его фазы и биологический смысл.

    контрольная работа [22,7 K], добавлен 07.06.2010

  • Основные положения гистологии, которая изучает систему клеток, неклеточных структур, обладающих общностью строения и направленных на выполнение определенных функций. Анализ строения, функций эпителия, крови, лимфы, соединительной, мышечной, нервной ткани.

    реферат [31,3 K], добавлен 23.03.2010

  • Изучение видов и функций различных тканей человека. Задачи науки гистологии, которая изучает строение тканей живых организмов. Особенности строения эпителиальной, нервной, мышечной ткани и тканей внутренней среды (соединительной, скелетной и жидкой).

    презентация [309,1 K], добавлен 08.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.