Характеристика детской неврологии

Семиотика поражений нервной системы у детей. Сущность неврологического обследования малышей грудного возраста. Анализ травм головного и спинного мозга. Характер важнейших симптомокомплексов неврологии. Особенности нарушения мозгового кровообращения.

Рубрика Медицина
Вид учебное пособие
Язык русский
Дата добавления 06.04.2015
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Ретикулярная формация представляет собой комплекс нервных клеток и волокон и расположена в центральной части покрышки ствола мозга на всем его протяжении. Волокна ретикулярной формации достигают передних отделов зрительных бугров.

К ретикулярной формации подходят многочисленные коллатерали от основных восходящих и нисходящих путей. Кроме того, ретикулярная формация имеет взаимные связи с гипоталамусом, зрительным бугром, образованиями с1риопаллидарной системы, корой больших полушарий (особенно с корой лимбической системы), а также с мозжечком, ядрами ствола мозга и системой заднего продольного пучка. От ретикулярной формации отходят волокна к спинному мозгу (ретикулоспинальные пути). Структуры ретикулярной формации участвуют в деятельности дыхательного и сосудодвигательного центров продолговатого мозга, центра взора моста.

В стволе мозга располагаются также ядра и пути, относящиеся к стриопаллидарной системе (красное ядро, черное вещество), системе координации движений (нижняя олива), глубокой чувствительности (тонкое и клиновидное ядра), системе заднего продольного пучка (ядра Даршкевича) и др.

Ножки мозга острым углом сходятся к мосту мозга и, расходясь кпереди, образуют межножковое продырявленное пространство, сквозь которое проходят мозговые сосуды, васкуляризирующие глубинные структуры мозга. Ножки представляют собой плотные тяжи белого вещества, содержащие нисходящие пути от коры к переднему рогу спинного мозга, двигательным ядрам черепных нервов и мозжечку. Ножки мозга можно условно разделить на три части: наружную, среднюю и внутреннюю. Снаружи проходят волокна затылочно-височно-мостового пути, медиально -- лобно-мостовые пути, которые затем направляются к мозжечку. В средней части ножки мозга проходят волокна корково-спинномозгового и корково-ядерного путей таким образом, что волокна, иннервирующие мышцы лица, расположены медиально, мышцы нижних конечностей -- латерально, а мышцы верхних конечностей -- посредине.

На границе ножек мозга с покрышкой располагается ядро черного вещества, лежащее в виде пластинки на проводящих путях. В среднем отделе между крышей (четверохолмием) и черным веществом находятся красное ядро, ядра III (глазодвигательного) и IV (блокового) нервов, задний продольный пучок, медиальная петля. Два ствола волокон задних продольных пучков расположены парамедианно у дна водопровода. Наружнее на этом же уровне лежат ядра III нерва (на уровне верхних холмиков) и IV нерва (на уровне нижних холмиков) так, что красное ядро оказывается помещенным между ними и задним продольным пучком с одной стороны и черным веществом -- с другой. В латеральном отделе среднего мозга проходит мощный ствол афферентных волокон -- медиальная петля, которую составляют два пути: булъботаламический, несущий импульсы глубокой чувствительности от тонкого и клиновидного ядер продолговатого мозга в зрительный бугор, и спиноталамический, являющийся проводником поверхностной чувствительности. В оральном отделе среднего мозга, кпереди от верхних холмиков, локализуются ядра заднего продольного пучка.

В окружности водопровода среднего мозга находится мощный слой ретикулярной формации. Над водопроводом среднего мозга располагается пластинка крыши среднего мозга (четверохолмие), представленная волокнами и ядрами, относящимися к анализаторам зрения и слуха. Верхние холмики соединены тяжами белого вещества с наружными коленчатыми телами, вместе с которыми они являются первичными зрительными центрами. Такая же связь имеется между нижними холмиками и внутренними коленчатыми телами (первичные слуховые центры).

От ядер верхних и нижних холмиков начинаются волокна тегментоспинального (покрышечно-спинномозгового) пути, участвующие в обеспечении старт-рефлексов.

Мост головного мозга. Лежит между средним мозгом и продолговатым мозгом. Вентральная часть моста образует толстый белый вал с резко выраженной поперечной волокнистостью. Посередине расположена основная борозда, в которой обычно лежит базилярная артерия. Оральная (передняя) часть моста содержит в основном продольные и поперечные волокна, в каудальной части, помимо проводящих волокон, находятся ядра черепных нервов (с V по VIII пару). Дорсальная поверхность моста представляет дно IV желудочка -- ромбовидную ямку. На поперечном срезе моста границу между дорсальной и центральной его частью составляет трапециевидное тело, волокна которого относятся к системе слухового анализатора. В вентральной части располагаются продольные волокна пирамидного пути, рассеянного здесь на множество мелких пучков между собственными ядрами моста, с которыми он имеет коллатеральные связи. От собственных ядер моста берут начало поперечные волокна к мозжечку, которые составляют его средние ножки и относятся к корково-мостомозжечковому пути. Поэтому существует прямая зависимость между развитием коры больших полушарий, вентральной части моста и мозжечка, и в связи с этим мост наиболее развит у человека.

В дорсальной части моста мозга, находятся чувствительные пути; в латеральных отделах -- спиноталамический путь, более медиально -- медиальная петля, содержащая бульботаламический путь. В оральной части моста оба чувствительных пути сливаются в один плотный ствол (медиальная петля), идущий дорсолатерально в мосту и среднем мозге.

Продолговатый мозг. Продолговатый мозг, являясь непосредственным продолжением спинного мозга, в своем строении во многом повторяет структуру спинного мозга. Как и другие отделы ствола мозга, продолговатый мозг представлен проводящими путями и ядрами. Оральный отдел продолговатого мозга граничит с мостом, а каудальный без четкой границы переходит в спинной мозг. Условно нижним краем продолговатого мозга считают перекрест пирамид или верхний край I шейного сегмента спинного мозга.

На вентральной поверхности продолговатого мозга располагается передняя срединная щель, по обе стороны от которой лежат пирамиды. Снаружи от пирамид расположены нижние оливы, соответственно которым на поверхности продолговатого мозга определяется продольный валик. Нижние оливы отделены от пирамид боковой передней бороздой. В каудальном отделе продолговатого мозга ниже ромбовидной ямки на дорсальной поверхности различимы задние канатики, в которых проходят пучки Голля и Бурдаха (тонкие и клиновидные пучки), разделенные непарной задней медиальной бороздой и парными заднелатеральными бороздами. В оральном отделе дорсальная поверхность продолговатого мозга открывается в полость ЙV желудочка, образуя задний угол ромбовидной ямки. Кнаружи от краев ромбовидной ямки на боковой поверхности продолговатого мозга прослеживается продольный валик, соответствующий веревчатым телам -- нижним ножкам мозжечка.

На поперечном срезе продолговатого мозга в вентральном его отделе проходит корково-спинномозговой путь, занимающий стволы пирамид. В центральной части располагаются волокна перекреста медиальной петли, несущие импульсы глубокой чувствительности от ядер Голля и Бурдаха к зрительному бугру. Вентролатеральные отделы продолговатого мозга занимают нижние оливы. Дорсальнее нижних олив проходят восходящие проводящие пути, составляющие нижние ножки мозжечка, а также чувствительный спиноталамический путь. В дорсальном отделе продолговатого мозга располагаются ядра каудальной группы черепных нервов (IX--XII пара), а также мощный слой ретикулярной формации.

Ромбовидная ямка. Дно IV желудочка имеет форму ромба, как бы вдавленного в дорсальную поверхность моста и продолговатого мозга. Верхние стороны ромба ограничены верхними ножками мозжечка, нижние -- нижними ножками. Верхние и нижние углы ромба соединяются продольной срединной бороздой. Кнаружи от этой борозды тянутся валики медиального возвышения, ограниченного снаружи бороздой (ограничивающая борозда). Из боковых углов ромбовидной ямки к середине тянутся парные мозговые полоски, разделяющие ромбовидную ямку на верхний и нижний треугольники (рис. 8).

В области ромбовидной ямки лежат ядра V--XII нервов, проекция которых на дно IV желудочка имеет большое значение в топической диагностике поражения ствола мозга. Рассмотрим их расположение кнаружи от срединной борозды. Биссектриса нижнего угла определяет локализацию медиально расположенного ядра XII нерва и латерально расположенного дорсального ядра блуждающего нерва. В области верхнего угла располагаются ядра III и IV нервов. В наружном углу локализуются вестибулярные и слуховые ядра. Кнутри от них лежит параллельно срединной борозде чувствительное ядро тройничного нерва, еще более кнутри -- ядро одиночного пути (вкусовое ядро), относящееся к системе IX и X нервов. Парамедианно кпереди от ядра XII нерва и дорсального ядра X нерва находятся двигательное ядро IX и X нервов и слюноотделительные ядра. В верхней части срединного возвышения располагается бугорок лицевого нерва, образованный волокнами внутреннего колена лицевого нерва, огибающими ядро отводящего нерва.

Мозжечок. Расположен в задней черепной ямке под мостом мозга и продолговатым мозгом. Сверху он отделен от затылочных долей больших полушарий мозжечковым наметом. В мозжечке различают два полушария и червь, которые покрыты тонким слоем серого вещества -- корой мозжечка. Поверхность коры мозжечка значительно увеличена за счет глубоких параллельных дугообразных борозд, разделяющих мозжечок на листки. В филогенетическом отношении в мозжечке различают его древнюю, старую и новую части. К древнему мозжечку относится маленькая долька -- клочок, лежащая на основании полушария

у средней ножки мозжечка, и связанная с клочком часть червя -- узелок. К старому мозжечку относится червь, к новому -- полушария (рис. 9).

В белом веществе полушария и червя мозжечка имеется несколько ядер. Парамедиально расположено парное ядро шатра nucl. fastigii, латерально от него -- мелкие островки серого вещества (шаровидное ядро -- nucl. globosus), еще более латерально, вдаваясь в белое вещество полушарий, -- пробковидное ядро nucl. emboliformis. В белом веществе полушарий размещаются зубчатые ядра nucl. dentatus. Указанные ядра, как и весь мозжечок, имеют разный филогенетический возраст: ядро шара относится к древнему мозжечку, шаровидное и пробковидное -- к старому, а зубчатое -- к новому.

Мозжечок имеет три пары ножек: верхние -- направляются к пластинке крыши среднего мозга (четверохолмию), средние связывают мозжечок с мостом мозга, нижние -- с продолговатым мозгом.

Ножки мозжечка -- это стволы проводящих путей, направляющихся к мозжечку или от мозжечка. В нижних ножках мозжечка проходят афферентные и эфферентные пути, в основном связанные со структурами червя мозжечка. Основные восходящие пути в нижних ножках мозжечка следующие: от задних рогов спинного мозга (задний спинно-мозжечковый путь), от вестибулярного ядра Бехтерева (вестибуломозжечковый путь), от ядер Голля и Бурдаха (бульбомозжечковый путь), от ретикулярной формации (ретикуломозжечковый путь), от нижней оливы (оливомозжечковый путь). Первые четыре пути заканчиваются в ядре шатра, оливомозжечковый путь -- в коре мозжечка. В нижних ножках проходит несколько эфферентных путей, в конечном итоге направляющихся к переднему рогу спинного мозга: мозжечково-ретикулоспинномозговой, мозжечково-вестибулоспинномозговой (через латеральное вестибулярное ядро Дейтерса), и мозжечково-оливоспинномозговой (см. рис. 9).

В наиболее мощных средних ножках мозжечка проходят мостомозжечковые волокна, являющиеся частью корково-мостомозжечковых путей, идущих от верхней лобной извилины и нижних отделов затылочной и височной долей через мост к коре мозжечка. В верхних ножках мозжечка проходят афферентный путь от спинного мозга (передний спинно-мозжечковый путь) и нисходящий мозжечково-руброспинномозговой путь, идущий от зубчатого ядра полушария мозжечка через красное ядро к переднему рогу спинного мозга.

Спинной мозг. Представляет собой цилиндрический тяж, расположенный в позвоночном канале. Длина спинного мозга у взрослого человека составляет 42-46 см. По длиннику спинного мозга имеются два утолщения -- шейное и поясничное. Образование этих утолщений тесно связано с сегментарным принципом строения спинного мозга (рис. 10). В спинном мозге насчитывается в общей сложности 31--32 сегмента: 8 шейных (С1--С8), 12 грудных (Th1--Th12), 5 поясничных (L1-L5), 5 крестцовых (S1-S5) и 1--2 копчиковых (Со1--Со2). Шейное утолщение располагается на уровне сегментов С5--Th1 и обеспечивает сегментарную иннервацию верхних конечностей. Поясничное утолщение соответствует сегментам L1-2-S1-2и осуществляет сегментарную иннервацию нижних конечностей. Ниже поясничного утолщения спинной мозг заострен концевой нитью, достигающей копчиковых позвонков.

На уровне каждого сегмента от спинного мозга отходят две пары передних и задних корешков. На небольшом расстоянии от спинного мозга задние корешки имеют выраженное утолщение -- спинальный узел, содержащий чувствительные нервные клетки. На каждой стороне передний и задний корешки сливаются в единый ствол, образуя спинномозговой канатик.

На поперечном срезе спинной мозг представлен серым и белым веществом. Серое вещество по форме напоминает крылья бабочки и имеет задние рога, содержащие чувствительные клетки; передние рога, содержащие двигательные клетки, и боковые рога, в которых преимущественно расположены вегетативные симпатические или парасимпатические нейроны, иннервирующие внутренние органы. Белое вещество состоит из покрытых миелиновыми оболочками нервных волокон, связывающих сегменты спинного мозга с центрами головного мозга. Используя контуры «бабочки» серого вещества, белое вещество спинного мозга условно разделяют на три канатика (столба): задний (кнутри от заднего рога), боковой (между задним и передним рогами) и передний (кнутри от переднего рога). Два задних канатика плотно прилегают друг к другу, а передние разделяются передней срединной щелью. В центре спинного мозга правая и левая половины серого вещества соединяются тонким перешейком (срединное промежуточное вещество), в центре которого располагается отверстие центрального канала.

Задние канатики образованы восходящими проводниками глубокой чувствительности. Медиально располагаются проводники глубокой чувствительности от нижних конечностей (тонкий пучок Голля), латерально -- от верхних конечностей (клиновидный пучок Бурдаха). Кроме того, в задних канатиках представлены проводники тактильной чувствительности.

В боковых канатиках спинного мозга располагаются нисходящие и восходящие проводники. К нисходящим прежде всего относятся волокна пирамидного (латерального корково-спинномозгового) пути, расположенного в задних отделах боковых канатиков у средней части заднего рога. Кпереди от пирамидного пути проходит красноядерно-спинномозговой путь, а также ретикулоспинномозговой путь. Все нисходящие пути заканчиваются у клеток переднего рога спинного мозга. Вдоль всего латерального края бокового столба идут волокна восходящих спинно-мозжечковых путей: переднего спинно-мозжечкового пути Говерса и заднего спинно-мозжечкового пути Флексига. Кнутри от пути Говерса проходят восходящие волокна поверхностной чувствительности (латеральный спиноталамический путь). Помимо этого, в боковых канатиках проходит восходящий спинопокрышечный путь, несущий проприоцептивную информацию к ядрам четверохолмия.

Передние канатики спинного мозга составлены преимущественно нисходящими путями от передней центральной извилины, стволовых и подкорковых образований к переднему рогу спинного мозга (передний неперекрещенный пирамидный путь, вестибулоспинальный путь, оливоспинномозговой путь и покрышечно-спинномозговой путь). Кроме этого, в передних канатиках проходит тонкий чувствительный пучок--передний спиноталамический путь.

Состав клеток, находящихся в задних и передних рогах спинного мозга, неоднороден. В задних рогах располагаются чувствительные клетки, отростки которых переходят через среднюю линию спинного мозга в боковой столб противоположной стороны и составляют путь поверхностной чувствительности. В основании заднего рога выделяется обособленная группа клеток, относящихся к системе мозжечковой проприоцепции. Отростки этих клеток направляются в боковые столбы

В передних рогах спинного мозга различают три типа двигательных клеток: альфа-большие, альфа-малые и гамма-нейроны.

В боковых рогах спинного мозга располагаются сегментарные вегетативные эфферентные клетки. На уровне сегментов С8--L3 располагаются эфферентные клетки симпатической нервной системы, на уровне C8-Th, образован симпатический цилиоспинальный центр. На уровне крестовых сегментов S2-S4 находится спинальный парасимпатический центр регуляции функции тазовых органов.

Периферическая нервная система. К периферической нервной системе относятся черепные и спинномозговые нервы, связанные со стволом головного мозга и спинным мозгом, их корешки и чувствительные узлы, а также нервные сплетения. Корешки спинномозговых нервов имеют строго сегментарное распределение и разделяются на задние, представленные чувствительными волокнами, и передние, представленные двигательными волокнами. Чувствительный межпозвоночный узел расположен по ходу заднего корешка вблизи от спинного мозга. В нем находятся чувствительные ложноуниполярные клетки, а также афферентные клетки вегетативной и мозжечковой проприоцептивной афферентации. За спинномозговым узлом передний и задний корешки сливаются в общий ствол, образуя смешанный спинномозговой нерв. Последний по выходе из межпозвоночного отверстия делится на четыре ветви: переднюю, иннервирующую кожу и мышцы конечностей и передней поверхности туловища; заднюю, иннервирующую заднюю поверхность туловища; оболочечную, иннервирующую оболочки спинного мозга, и соединительную, направляющуюся к симпатическим узлам (рис. 11). Передние ветви нескольких соседних сегментов объединяются, образуя сплетения, из которых выходят периферические нервы. Как правило, периферические нервы смешанные, т. е. имеют в своем составе чувствительные, двигательные и вегетативные волокна.

Шейное сплетение образовано передними ветвями спинномозговых нервов четырех верхних шейных сегментов (рис. 12). Из шейного сплетения выходят периферические нервы, обеспечивающие иннервацию кожи и мышц затылочной области и шеи, а также диафрагму (диафрагмальный нерв).

Плечевое сплетение образовано передними ветвями спинномозговых нервов С5--С8 шейных сегментов и I грудного сегмента. Периферические нервы, берущие начало из плечевого сплетения, обеспечивают двигательную и чувствительную иннервацию плечевого пояса и верхних конечностей. Иннервация верхних конечностей осуществляется тремя основными нервами: срединным, локтевым и лучевым.

При формировании плечевого сплетения спинномозговые нервы первоначально объединяются в два пучка: с С5 по С7 и с С7 по Th1. В связи с этим в клинике может наблюдаться изолированное поражение верхнего или нижнего ствола волокон плечевого сплетения.

Поясничное сплетение образовано передними ветвями трех верхних поясничных спинномозговых нервов и частично коллатералями от Th12 и L4 (рис. 13). Поясничное сплетение дает начало бедренному нерву и ряду более тонких нервных стволов, обеспечивающих чувствительную иннервацию передней, наружной и внутренней поверхностей бедра, частично области ягодицы, лобка, мошонки и большой половой губы, а также иннервацию мышц, участвующих в разгибании голени, сгибании и приведении бедра и др.

Крестцовое сплетение образуется передними ветвями спинномозговых нервов, отходящих от L5--S4, частично от L4 сегментов спинного мозга. Крестцовое сплетение обеспечивает иннервацию мышц задней поверхности бедра, голени, стопы, ягодичных мышц, отводящих мышц бедра, а также мышц промежности, чувствительную иннервацию промежности, половых органов, ягодиц, задней поверхности бедра, голени стопы. Основными нервами, выходящими из сплетения, являются седалищный (его ветви -- большеберцовый и малоберцовый нервы), верхний и нижний ягодичные нервы и др.

Копчиковое сплетение образовано передними ветвями спинномозговых нервов S5--C1. Из него выходит несколько тонких заднепроходно-копчиковых нервов, оканчивающихся в коже у верхушки копчика.

В отличие от спинномозговых нервов черепные нервы не имеют строгого анатомического сегментарного распределения. Насчитывают 12 пар черепных нервов, пронумерованных с I по XII в зависимости от расположения их корешков на базальной поверхности мозга, спереди назад. Анатомия и физиология черепных нервов изложена в специальной главе.

Вегетативная нервная система. Представляет собой совокупность центров и путей, обеспечивающих регулирование внутренней среды организма. Вегетативная нервная система регулирует метаболические процессы, деятельность внутренних органов, гладкой мускулатуры, железистого аппарата, участвуя в интеграции внутренней среды организма в единое целое.

Между вегетативной и соматической (анимальной) нервной системой существует тесная взаимосвязь: все двигательные реакции получают вегетативно-трофическое обеспечение (изменение пульса, артериального давления, газообмена и т. д.), а наряду с этим двигательные акты влияют на регуляцию вегетативных функций. Однако анатомически можно выделить специализированные вегетативные центры и узлы; в клинике наблюдаются изолированные их поражения. В современной неврологии сформировалась отдельная отрасль -- клиническая вегетология, занимающаяся проблемами физиологического и патологического функционирования вегетативной нервной системы.

Основной принцип вегетативной регуляции -- рефлекторный. Афферентное звено рефлекса начинается с разнообразных интероцепторов, расположенных во всех органах. От интероцепторов по специализированным вегетативным волокнам или смешанным периферическим нервам афферентные импульсы достигают первичных сегментарных центров (спинальных или стволовых), а от них по эфферентным каналам проводятся регулирующие влияния к органам. В отличие от соматического спинального мотонейрона вегетативные сегментарные эфферентные пути двухнейронны: волокна от клеток боковых рогов прерываются в узлах, и уже постганглионарный нейрон достигает органа.

Вегетативные узлы образуют между собой многочисленные связи, а постганглионарные волокна -- сплетения. Центры вегетативной нервной системы расположены в коре головного мозга, а также в боковых рогах спинного мозга.

На основании морфологических, нейрохимических, функциональных особенностей вегетативная нервная система условно делится на симпатическую и парасимпатическую. Существует мнение, что парасимпатическая система филогенетически более древняя и в ее функции входит прежде всего стабилизация внутренней среды. Симпатическая нервная система--филогенетически более молодое образование; ее функцией прежде всего является адаптация внутренней среды к меняющимся условиям и реакция на неожиданные воздействия. Подобное разделение несколько умозрительно, поскольку любой орган находится под постоянным влиянием парасимпатической и симпатической систем (рис. 15).

Симпатическая нервная система. В спинном мозге симпатическая система представлена клетками боковых рогов в сегментах

C8-L3. Аксоны этих клеток выходят из спинного мозга в составе передних корешков, образуя rami communicantes albi (преганглионарные волокна), и заканчиваются в пограничном симпатическом стволе. Меньшая часть волокон заканчивается в превертебральных и интрамуральных узлах, расположенных в стенках внутренних органов. Часть постганглионарных волокон, начинающихся в узлах пограничного симпатического ствола, идет в смешанные спинномозговые нервы, другая возвращается через задние корешки в спинной мозг и направляется в висцеральные вегетативные сплетения.

Пограничный симпатический ствол состоит из 20--25 узлов, соединенных продольными волокнами. Узлы шейного и грудного отделов пограничного ствола расположены по бокам от позвоночника, поясничного и крестцового отделов -- на передней поверхности позвоночника.

Шейный отдел пограничного ствола состоит из трех узлов -- верхнего, среднего и нижнего. Верхний шейный симпатический узел посылает постганглионарные волокна к четырем верхним шейным корешковым нервам, к сплетениям наружной и внутренней сонных артерий, к диафрагмальному и подъязычному нервам; II и III симпатические узлы посылают постганглионарные волокна к 5--8-му шейным и 1-му грудному корешковым нервам, к щитовидной железе, к общей сонной и подключичной артериям. Нижний шейный симпатический узел часто сливается с первым грудным узлом, образуя звездчатый узел (gangl. stellatum). От него отходят симпатические волокна к 6--8-му шейным корешковым нервам, к сонным, подключичным, позвоночным артериям, к сердцу, возвратному нерву.

Грудной отдел пограничного ствола состоит из 10--12 узлов. Постганглионарные волокна направляются к межреберным нервам, к сосудам и органам брюшной и грудной полостей. От IV--V грудных узлов отходят волокна к сердечному сплетению. От V--X грудных узлов отходят большой и малый чревные нервы к солнечному сплетению.

Поясничный отдел пограничного ствола состоит из 3--4 узлов. Постганглионарные волокна идут к соответствующим корешковым нервам, солнечному сплетению, брюшной аорте. Крестцовый отдел представлен 3^4 узлами. Постганглионарные волокна направляются к крестцовым корешковым нервам, к органам малого таза.

Между симпатической и соматической сегментарной иннервацией нет полного соответствия. В области С8--Th3 локализуются центры для симпатической иннервации головы и шеи, в области Th4-Th7 -- для иннервации рук, в области Th8-- The9-- для иннервации ног.

Парасимпатическая нервная система представлена структурными образованиями в мозговом стволе и спинном мозге. В среднем мозге находится мезэнцефальный отдел парасимпатической нервной системы: парасимпатические ядра (Якубовича) и центральное хвостовое (Перлиа), от которых отходят волокна в составе глазодвигательного нерва к gangl. ciliare.

В продолговатом мозге расположен бульбарный отдел парасимпатической нервной системы. Он представлен: 1) секреторными и слюноотделительными ядрами, верхним и нижним, иннервирующими слезную и слюнные железы, 2) задним ядром блуждающего нерва (nucl. dorsalis

n. vagi), который иннервирует все внутренние органы, гладкую мускулатуру, отдает секреторные волокна.

В крестцовых сегментах спинного мозга находится сакральный отдел парасимпатической нервной системы, от которого отходят волокна, составляющие тазовый нерв, иннервирующий мочевой пузырь, прямую кишку, половые органы.

Парасимпатические узлы в отличие от симпатических располагаются не вблизи от спинного мозга, а интрамурально, непосредственно в иннервируемом органе.

Оболочки головного и спинного мозга, желудочки мозга. Циркуляция цереброспинальной жидкости. Головной и спинной мозг окружены тремя оболочками: мягкой (pia mater), непосредственно прилегающей к поверхности мозга; паутинной (arachnoidea), занимающей срединное положение, и твердой (dura mater).

Твердая мозговая оболочка имеет два листка (рис. 16). Наружный листок примыкает изнутри к черепу (выстилает также внутренний канал позвоночника), составляя его надкостницу. Внутренний листок в полости черепа на значительной площади сращен с наружным. В местах их расхождения образованы синусы -- ложа для оттока венозной крови из мозга. Во внутрипозвоночном канале между листками твердой мозговой оболочки (эпидуральное пространство) помещается рыхлая жировая ткань, снабженная развитой венозной сетью. В полости черепа эпидуральное пространство расположено между наружным листком твердой мозговой оболочки и костями черепа.

Паутинная оболочка отделена от твердой оболочки капиллярным субдуральным пространством, от мягкой мозговой оболочки -- субарахноидальным. В субарахноидальном пространстве между паутинной и мягкой оболочками протянуты тяжи и пластинки; проходящие в нем сосуды как бы подвешены в переплетении трабекул. Субарахноидальное пространство заполнено цереброспинальной жидкостью (ликвором).

Паутинная оболочка не заходит в щели между извилинами. Мягкая мозговая оболочка, находящаяся в тесном соприкосновении с веществом мозга, покрывает его и в тонких щелях, и в бороздах и на некотором протяжении сопровождает кровеносные сосуды, входящие в мозг. Вокруг мозговых сосудов имеются узкие пространства -- периваскулярные (при патологических процессах, например при отеке мозга, они резко расширяются), которые можно проследить до самых мелких капиллярных разветвлений, а также вокруг нервных клеток (перицеллюлярные пространства). Периваскулярное, перикапиллярное и перицеллюлярное пространства носят название пространств Вирхова -- Робена. Они заполнены цереброспинальной жидкостью и являются, таким образом, мельчайшими ликвороносными путями. Внутримозговые ликвороносные пути связаны с субарахноидальным вместилищем цереброспинальной жидкости.

Субарахноидальное пространство имеет несколько более или менее значительных расширений, заполненных ликвором. Такие полости называются подпаутинными цистернами. Наиболее мощной является мозжечково-мозговая (большая) цистерна, расположенная между мозжечком и продолговатым мозгом. «Окутанный» цереброспинальной жидкостью субарахноидального пространства, мозг как бы «плавает» в ней, поэтому внешние физические воздействия доходят до вещества мозга уже значительно ослабленными. Особенно большим количеством цереброспинальной жидкости окружен наиболее ранимый, жизненно важный отдел мозга -- ствол. Вокруг ствола расширенное субарахноидальное пространство образует несколько цистерн. Между ножками мозга находится межножковая цистерна (cisterna interpeduncularis), кпереди от нее -- cisterna chiasmatis.

В области спинного мозга субарахноидальное пространство достаточно велико на всем протяжении. На уровне II поясничного позвонка, где заканчивается спинной мозг, субарахноидальное пространство образует конечную цистерну, размеры которой варьируют в зависимости от возраста. У 3-месячного плода спинной мозг занимает весь внутри-позвоночный канал, не оставляя места для цистерны. При дальнейшем развитии рост спинного мозга отстает от роста позвоночника. У новорожденного конец спинного мозга находится на уровне III поясничного позвонка, у детей 5-летнего возраста спинной мозг обычно заканчивается на уровне I--II поясничных позвонков; в дальнейшем установившееся соотношение уже не меняется.

Помимо субарахноидального пространства, цереброспинальная жидкость содержится в четырех желудочках головного мозга и в центральном канале спинного мозга. Желудочковая система состоит из двух боковых, Ш и IV желудочков мозга.

Боковые желудочки расположены в полушариях мозга и состоят из переднего рога, соответствующего лобной доле, тела желудочка, расположенного в глубине теменной доли, заднего рога, находящегося в затылочной доле, и нижнего рога, локализующегося в височной доле. В передних отделах внутренней поверхности боковых желудочков расположены межжелудочковые монроевы отверстия, через которые эти желудочки сообщаются с III желудочком.

На средней линии между зрительными буграми расположен III желудочек. Он посредством водопровода соединяется с IV желудочком.

IV желудочек через боковые отверстия (foramen Luschka) сообщается с субарахноидальным пространством и через foramen Magendi -- с большой цистерной. Непосредственным продолжением IV желудочка является центральный спинномозговой канал.

Общее количество цереброспинальной жидкости у новорожденного составляет 15--20 мл, в возрасте 1 года --35 мл, у взрослого-- 120--150 мл. При некоторых заболеваниях (гидроцефалия) количество жидкости может увеличиваться до 800--1000 мл.

Цереброспинальная жидкость продуцируется сосудистыми сплетениями желудочков, имеющими железистое строение, а всасывается венами мягких мозговых оболочек. Отчасти фильтрация цереброспинальной жидкости в венозное русло осуществляется через пахионовы грануляции -- выросты паутинной оболочки, вдающиеся в полость венозных синусов. Пахионовы грануляции у детей немногочисленны; у взрослых их число увеличивается и соответственно возрастает функциональное значение.

Процессы всасывания и продукции цереброспинальной жидкости протекают непрерывно и интенсивно. В течение суток жидкость может обмениваться до 4--5 раз. Поскольку цереброспинальная жидкость продуцируется в желудочках головного мозга, а основное всасывание обеспечивается всей поверхностью мягких мозговых оболочек как головного, так и спинного мозга, то возникает положение, при котором в полости черепа постоянно имеется дефицит всасывания (при ненарушенной ликворной циркуляции он компенсируется оттоком цереброспинальной жидкости в субарахноидальное пространство спинного мозга), а во внутрипозвоночном канале дефицит продукции цереброспинальной жидкости, который компенсируется притоком из полости черепа. При нарушении ликворообращения между головным и спинным мозгом цереброспинальная жидкость в полости черепа накапливается и «разжижается», а в субарахноидальном пространстве спинного мозга усиленно всасывается и концентрируется.

Циркуляция цереброспинальной жидкости подчиняется различным влияниям, в том числе зависит от пульсации мозга, дыхания, движений головы, интенсивности продукции и всасывания самой жидкости. Тем не менее можно указать основное направление тока цереброспинальной жидкости: боковые желудочки > монроевы (межжелудочковые) отверстия > III желудочек > водопровод мозга > IV желудочек > отверстия Лушки (латеральная апертура IV желудочка) и Мажанди (срединная апертура IV желудочка) > большая цистерна и наружное субарахноидальное пространство головного мозга > центральный канал и субарахноидальное пространство спинного мозга > конечная цистерна.

Цереброспинальная жидкость является не только механической защитой мозга, амортизирующей его при внешних воздействиях, толчках, сотрясениях, но и амортизатором колебаний осмотического давления, поддерживающим относительное его равновесие и постоянство в тканях мозга. Цереброспинальная жидкость играет определенную роль как посредник между кровью и тканью в отношении питания и обмена веществ мозга. Некоторые отработанные мозговой тканью продукты обмена выводятся с цереброспинальной жидкости в венозное русло. Проникновение из крови в цереброспинальную жидкость, а затем в ткань мозга возможно не для всех веществ. Многие лекарственные вещества, вводимые парентерально, не попадают в вещество мозга, тогда как легко обнаруживаются в других тканях.

Мозг, получающий информацию обо всем организме и управляющий его работой, огражден от других систем организма своеобразным иммунологическим барьером, делающим ткань мозга относительно автономной, независимой от иммунных «бурь», проходящих в организме. Поиски морфологического субстрата этого барьера продолжаются многие десятилетия и еще не завершены. В настоящее время принята точка зрения, согласно которой субстратом, осуществляющим «барьерную» функцию гематоэнцефалического или гематоликворного барьера, является астроцитарное (астроциты -- клетки макроглии) оплетение капилляров, контролирующее все формы «обмена» между тканью и кровью, тканью и мозгом. Отмечается также роль барьерной функции эндотелия мозговых капилляров. Концентраций поступающих в мозг веществ, несомненно, зависит также от изменений циркуляции и общего количества цереброспинальной жидкости. Нарушение гематоэнцефалического барьера приводит к повышенной ранимости мозга при инфекционных и других заболеваниях организма.

Онтогенез нервной системы

Нервная система плода начинает развиваться на ранних этапах эмбриональной жизни, продолжая развитие и в первые годы после рождения. Из эктодермы в дорсальном отделе зародыша образуется нервная пластинка, впоследствии формируется нервный желобок, а затем -- нервная трубка.

У недельного эмбриона намечается незначительное утолщение в оральном отделе нервной трубки. На 3-й неделе развития в головном отделе нервной трубки образуются три первичных мозговых пузыря (передний, средний и задний), из которых развиваются главные отделы головного мозга: конечный (prosencephalon), средний (mesencephalon) и ромбовидный мозг (rhombencephalon). В последующем передний и задний мозговые пузыри расчленяются каждый на два отдела, в результате чего образуется пять мозговых пузырей: конечный (telencephalon), промежуточный (diencephalon), средний (mesencephalon), задний (metencephalon) и продолговатый (myelencephalon). Из конечного мозгового пузыря развиваются полушария головного мозга и подкорковые ядра, из промежуточного -- промежуточный мозг (зрительные бугры, подбугорье, гипоталамус), из мезэнцефальной части -- средний мозг (четверохолмие, ножки мозга, сильвиев водопровод). Metencephalon образует мост и мозжечок, myelencephalon --продолговатый мозг.

К 3-му месяцу внутриутробного развития определяются основные части центральной нервной системы: большие полушария, ствол, мозговые желудочки с выстилающей их эпендимальной тканью и спинной мозг. К 5-му месяцу дифференцируются основные борозды коры больших полушарий: сильвиева, роландова, прецентральная, теменно-затылочная и др., однако кора остается еще недостаточно развитой. На 6-м месяце отчетливо выявляется функциональное преобладание высших отделов над стволово-спинальными.

Головной мозг новорожденного имеет относительно большую величину, масса его в среднем составляет '/в массы тела, т.е. около 400 г, причем у мальчиков она несколько больше, чем у девочек. У новорожденного хорошо выражены длинные борозды, крупные извилины, но глубина и высота их невелики. Мелких борозд и извилин относительно мало; они появляются постепенно в течение первых лет жизни. К 9-месячному возрасту первоначальная масса мозга удваивается и к концу первого года жизни составляет 1/11 --1/12 массы тела. К 3 годам масса головного мозга по сравнению с массой его при рождении утраивается, к 5 годам составляет 1/13-- 1/14 массы тела, к 20 годам первоначальная масса мозга увеличивается в 4--5 раз и составляет у взрослого человека всего 1/40 массы тела. Наряду с ростом головного мозга меняются и пропорции черепа.

Мозговая ткань новорожденного мало дифференцирована. Корковые клетки, стриарное тело, пирамидные пути недоразвиты; плохо дифференцируются серое и белое вещество. Нервные клетки плодов и новорожденных расположены концентрировано на поверхности больших полушарий и в белом веществе мозга. С увеличением поверхности головного мозга нервные клетки мигрируют в серое вещество; концентрация их в расчете на общий объем мозга уменьшается. В то же время плотность сети мозговых сосудов увеличивается.

У новорожденного по сравнению со взрослым затылочная доля коры больших полушарий имеет относительно большие размеры. Количество полушарных извилин, их форма, топографическое положение претерпевают определенные изменения по мере роста ребенка. Наибольшие изменения происходят в течение первых 5--6 лет, и лишь к 15--16 годам отмечаются те взаимоотношения, которые наблюдаются у взрослых.

Боковые желудочки сравнительно широкие. Мозолистое тело тонкое и короткое, в течение первых 5 лет оно становится толще и длиннее, достигая к 20 годам окончательных размеров.

Мозжечок у новорожденного развит слабо, расположен относительно высоко, имеет продолговатую форму, малую толщину и неглубокие борозды. Мост мозга по мере роста ребенка перемещается к скату затылочной кости. Продолговатый мозг новорожденного расположен более горизонтально.

В постнатальном периоде претерпевает изменения и спинной мозг. Располагаясь в спинномозговом канале, спинной мозг оканчивается у 5-летнего ребенка на уровне I--II поясничных позвонков в виде конуса, от которого далее вниз тянутся нити конского хвоста. Спинной мозг новорожденного относительно длиннее, чем у взрослых, и доходит до нижнего края III поясничного позвонка. В дальнейшем рост спинного мозга отстает от роста позвоночника, в связи с чем нижний конец его как бы перемещается кверху. Рост спинного мозга продолжается приблизительно до 20 лет. Масса его увеличивается примерно в 8 раз по сравнению с периодом новорожденности. Однако к 5--6 годам соотместами ядра совсем отсутствуют. С возрастом и развитием ребенка отмечаются увеличение количества клеток и изменение их микроструктуры.

Спинной мозг новорожденного имеет более законченное морфологическое строение по сравнению с головным мозгом, в связи с чем оказывается и более совершенным в функциональном отношении.

Периферическая нервная система новорожденного недостаточно миелинизирована, пучки нервных волокон редкие, распределены неравномерно. В клетках периневральной оболочки относительно велико количество ядер. Процессы миелинизации происходят неравномерно в различных отделах. Миелинизация черепных нервов осуществляется в течение первых 3--4 мес и заканчивается к 1 году 3 мес. Миелинизация спинальных нервов продолжается до 2--3 лет (рис. 19).

Вегетативная нервная система функционирует у ребенка с момента рождения. После рождения отмечаются слияние отдельных узлов и образование мощных сплетений симпатической нервной системы.

Общий принцип функционирования нервной системы

Цефализация нервной системы в процессе эволюции характеризовалась образованием в головном мозге центров, которые все в большей степени подчиняли себе нижестоящие образования. В итоге в мозговом стволе сформировались жизненно важные центры автоматической регуляции различных функций в масштабе всего организма.

Большое значение имеет вертикальная организация управления, т. е. постоянная циркуляция импульсов между выше- и нижестоящими отделами. Долгое время считалось, что высшие нервные центры оказывают постоянное тормозящее влияние на низшие, поэтому при поражении высших отделов растормаживаются низшие. Наибольшую известность получила теория диссолюции, разработанная английским неврологом Джексоном. Согласно этой теории, поражение эволюционно молодых центров приводит к активизации эволюционно более древних отделов, т. е. наблюдается как бы обратный ход эволюционного процесса (диссолюция), растормаживание древних форм реагирования.

В неврологической клинике наблюдаются случаи, когда при поражении высших центров выявляется избыточная активность низших центров. Однако суть этих нарушений не в диссолюции, не в высвобождении низших центров из-под влияния высших. При нарушении центральных влияний снижается гибкость регулирования и автоматизм этого процесса становится более примитивным. Кроме того, активизация спинальных центров может выступать как проявление компенсаторных процессов.

Несмотря на иерархическую структуру нервной системы, функционирование различных ее отделов неразделимо. Для выполнения простых действий необходимо взаимодействие многих сложных автоматических систем нервной регуляции и управления. Рефлекторный принцип нервной деятельности нельзя рассматривать как простую схему стимул -- реакция. Лишь в двухнейронной дуге такая схема может соответствовать действительности. В большинстве случаев любая реакция -- результат сложной переработки информации, координированного участия различных интегративных уровней.

Сложность процессов управления и регуляции можно проиллюстрировать на примере даже элементарных реакций. Ребенок услыхал звук погремушки, повернул голову в сторону звука и увидел погремушку. В этом акте принимают участие мезэнцефальные центры слуха и зрения, таламус, кора больших полушарий. Для его осуществления необходимо наличие не только связей между слуховыми и зрительными

А. Схема активирующих влияний ретикулярной формации.

центрами, но и сложного комплекса рефлекторных актов, обеспечивающих сочетанный поворот головы и содружественное движение глазных яблок, перераспределение тонуса мышц шеи и всего тела, а изменение позы требует в свою очередь активизации систем, обеспечивающих равновесие тела. Но вот ребенок, увидев игрушку, тянется к ней рукой. Для успешного выполнения этой двигательной задачи необходимы как система иннервации произвольного двигательного акта, так и оценка расстояния до предмета, соотнесенность мышечного усилия и расстояния, чувство положения руки в пространстве, реализации точного «попадания» руки на предмет.

В целом последовательность обработки поступающей в нервную систему информации и реализации избранного решения в виде конкретного действия можно условно расчленить на следующие этапы. Наиболее периферический рецепторно-эффекторный уровень, представленный рецепторным аппаратом и мышцей, обеспечивает, с одной стороны, трансформацию энергии раздражителя в специфическую энергию нервного импульса, характерного для определенной афферентной системы, а с другой стороны -- переработку эфферентного нервного сигнала в энергию мышечного сокращения. Рецепторный аппарат является основным источником афферентации для следующего интегративного уровня -- сегментарного (рис. 20).

Под сегментарным уровнем подразумевается не только

Б. Общий принцип обработки информации в нервной системе (условная схема). собственно сегмент спинного мозга, но и «сегментарные» по своей сути стволовые комплексы, состоящие из чувствительных и двигательных ядер черепных нервов. «Сегмент» располагает собственными средствами приема и переработки поступающих от рецепторов сигналов, а также аппаратом, вырабатывающим эфферентный импульс к мышце. В процессе эволюции «сегмент» постепенно утрачивает свое значение как центр выработки эфферентного ответа, становясь на поздних этапах филогенеза лишь пунктом перекодирования информации, поступающей от рецепторов. Основную часть этой перекодированной информации «сегмент» посылает в вышележащий и более сложный аппарат интеграции -- подкорковые структуры. Одновременно поддерживается на определенном уровне активность эфферентных (двигательных) сегментарных центров, обеспечивающих относительное постоянство готовности мышц к сокращению.

Подкорковые структуры имеют значительно более тонкий аппарат обработки информации по сравнению с «сегментом» и прежде всего в связи с наличием нескольких независимых афферентных каналов, а также благодаря работе подкорковой эфферентной системы (стриопаллидарной). Стриопаллидарная система непосредственно не связана с мышцей, но, управляя ею через посредничество сегментарных эфферентных центров, принимает участие в выработке сложных автоматизированных двигательных актов, требующих согласованной работы многих групп мышц.

Располагая тонкодифференцированной системой приема и обработки информации, собственными эфферентными каналами, подкорковый интегративный уровень одновременно является следующим этапом кодирования афферентных сигналов, обеспечивающим отбор важнейших сведений и подготовку их к приему в коре больших полушарий.

Таким образом, информация, которая по афферентным каналам поступает в кору больших полушарий, предварительно обрабатывается, перекодируется по крайней мере на трех этапах: рецепторно-эффекторном, сегментарном и подкорковом. Каждый интегративный уровень самостоятельно обрабатывает часть информации и вырабатывает ответ, важнейшие же сведения посылает в вышележащие центры, которые в свою очередь выполняют ту же задачу. Вследствие этого в кору поступают лишь те сигналы, которые требуют сознательные целенаправленные действия человека.

Многократное перекодирование афферентных импульсов на пути их к коре обеспечивает поэтапный «отсев» сигналов, не имеющих решающего значения для организма в целом и подлежащих обработке на «докортикальных» уровнях интеграции. Это позволяет коре больших полушарий решать принципиальные для всего организма задачи, «не отвлекаясь на мелочи». Наряду с этим ошибка в работе любого «докортикального» уровня интеграции должна привести к поступлению извращенной информации в коре, и последняя, не имея непосредственной связи с внешним источником информации, будет вырабатывать ошибочное решение. Этого не происходит благодаря многоканальному поступлению афферентных импульсов к коре, что обеспечивает объективную оценку информации каждого афферентного канала, своевременное обнаружение «ошибки» и компенсацию, коррекцию ее. Так, например, снижение зрения приводит к активизации деятельности слухового анализатора, анализатора чувствительности; нарушение координации движений, обусловленное снижением чувствительности, компенсируется усилением зрительного контроля за положением тела в пространстве.

Импульсы, направляемые в кору, первоначально поступают в так называемые проекционные корковые зоны, в которых получает отражение, «проецируется» информация от всех рецепторных зон, но уже в обработанном, сжатом виде. Анализ и синтез этой информации осуществляются в корковых центрах, обеспечивающих «узнавание» -- сопоставление принимаемых сигналов с хранимым в памяти мозга «образом» источника информации, обновление и конкретизацию его (гностические центры).

На основании согласованной работы всех гностических центров вырабатывается объективное представление об окружающей человека среде и состоянии самого организма. В результате анализа ситуации и реальных возможностей двигательных систем на данный момент формируется «решение» -- план действия.

Реализация плана действия осуществляется центрами праксиса, обеспечивающими подбор и последовательное включение сложившихся двигательных автоматизмов, адекватных создавшимся условиям среды. Центры праксиса являются высшими центрами управления двигательными актами, и в их «подчинении» находятся все эфферентные системы нижележащих интегративных уровней, ритм работы и активность которых зависят от нисходящих корковых влияний.

В условиях нормальной работы нервной системы в целом эфферентные сигналы спускаются сверху вниз по всем этапам, проходя проекционую двигательную область, подкорковые эфферентные структуры и мозжечок, сегментарный двигательный аппарат, и следуют к мышце, последовательно перекодируясь на каждом интегративном уровне. Сигналы центров праксиса, подкоркового аппарата «непонятны» мышце и поэтому не могут миновать конечный двигательный путь -- сегментарный мотонейрон.

Автономная работа интегративных уровней, «замыкание» афферентация на собственные эфферентные центры в норме сведена до минимума, и последние находятся в основном под влиянием тех импульсов, которые спускаются сверху.

В случае поражения того или иного уровня должны нарушаться его собственные влияния на нижележащие центры и прерываться связь их с корой, поэтому кора располагает дополнительными каналами эфферентации, доставляющими команду мышце, минуя пораженный отдел. Если все же наступает перерыв корковых влияний на расположенные ниже интегративные уровни, последние переходят на автономный режим работы, посылая все свои афферентные сигналы к собственным эфферентным системам. Этим обусловлен феномен растормаживания низших систем при поражении вышележащих.

...

Подобные документы

  • Диагностическое исследование головного и спинного мозга. Применение компьютерной и магнитно-резонансной томографии в неврологии. Развитие визуализирующих технологий в нейрорентгенологии. Проведение перфузионных исследований. Ангиография и миелография.

    презентация [638,3 K], добавлен 06.09.2015

  • Классификация нарушений мозгового кровообращения. Противопоказания к проведению тромболитической терапии. Методы лечения аневризм. Дифференциальная диагностика острых нарушений мозгового кровообращения по Е.И. Гусеву. Симптомы и синдромы в неврологии.

    курсовая работа [891,6 K], добавлен 06.10.2011

  • Вклад клинической неврологии в изучение мозга. Развитие строения коры в эмбрионе. Связь фундаментальной нейронауки и практической неврологии. Особенности нейрональных ритмов. Значение исследований в фундаментальной науке для лечения серьезных заболеваний.

    реферат [105,6 K], добавлен 06.11.2009

  • Острые нарушения мозгового кровообращения. Транзиторные ишемические атаки. Кровоизлияние в мозг, геморрагический и ишемический инсульт, болезнь Альцгеймера: этиология, патогенез, клиника, диагностика и лечение. Нарушения спинномозгового кровообращения.

    лекция [79,1 K], добавлен 30.07.2013

  • Причины травм позвоночника. Виды воздействий, приводящих в повреждению позвоночника, их характер и последствия. Формы травматических поражений спинного мозга. Симптомы травм позвоночника и спинного мозга. Доврачебная помощь при переломе позвоночника.

    презентация [2,7 M], добавлен 01.05.2016

  • Организация неврологического отделения детской городской больницы. Острые нарушения мозгового кровообращения. Оценка качества оказываемой медицинской профилактической помощи в неврологическом отделении. Кадровый состав неврологического отделения.

    контрольная работа [36,5 K], добавлен 19.11.2013

  • Методы лучевой диагностики в неврологии и нейрохирургии. Рентгеноконтрастные методики исследования головного мозга. Магнитно-резонансная и компьютерная томография. Лучевая семиотика повреждений черепа и головного мозга. Переломы костей свода черепа.

    презентация [1,3 M], добавлен 29.11.2016

  • Изучение анатомии спинного мозга как отдела центральной нервной системы. Описание системы кровоснабжения спинного мозга. Состав клинико-нозологических вариантов сирингомиелитического синдрома. Дифференциальная диагностика различных травм позвоночника.

    презентация [607,2 K], добавлен 20.06.2013

  • Строение и функции проводящих путей головного и спинного мозга. Виды чувствительности. Краткая история учения о локализации поражения в нервной системе (на примере афазии). Клинический диагноз и локализация поражения. Методы топической диагностики.

    презентация [1,8 M], добавлен 06.04.2016

  • Изучение этиологии, динамики и классификации инсультов – острых нарушений мозгового кровообращения, которые приводят к стойким нарушениям мозговой функции. Преходящие нарушения мозгового кровообращения. Гипертонический церебральный криз. Инфаркт мозга.

    презентация [2,5 M], добавлен 12.12.2011

  • Клинические проявления перинатальной патологии нервной системы ребенка. Виды черепно-мозговой грыжи, особенности хромосомных синдромов. Характеристика наследственно-дегенеративных и инфекционных заболеваний детской нервной системы. Травмы головного мозга.

    реферат [427,2 K], добавлен 13.10.2011

  • Определение предмета неврологии. Клинические проявления основных симптомов и синдромов. Понятие о цереброспинальной жидкости. Строение головного и спинного мозга. Сухожильные рефлексы, нормальные и патологические. Понятие нейрона и рефлекторной дуги.

    презентация [530,2 K], добавлен 10.01.2013

  • Причины заболеваний нервной системы у детей. Травматические и токсические заболевания. Сосудистые заболевания головного и спинного мозга. Приобретенные и врожденные аномалии развития нервной системы. Черепно-мозговые и спинномозговые грыжи. Микроцефалия.

    презентация [3,8 M], добавлен 28.05.2016

  • Анатомия и классификация травм позвоночника и спинного мозга. Виды политравм спины. Методы дифференциальной диагностики травм позвоночника и спинного мозга. Тактика фельдшера на догоспиталиальном этапе при травмах. Стандарт оказания неотложной помощи.

    курсовая работа [774,2 K], добавлен 12.01.2016

  • Строение сосудистой системы спинного мозга. Этиология нарушений спинномозгового кровообращения. Симптомы ишемического спинального инсульта, его критические зоны. Диагностика и лечение заболевания. Геморрагические нарушения спинального кровообращения.

    презентация [430,0 K], добавлен 26.03.2015

  • Классификация травм головного мозга. Общие сведения о закрытых травмах головного мозга. Влияние травм головного мозга на психические функции (хронические психические расстройства). Основные направления психокоррекционной и лечебно-педагогической работы.

    реферат [15,2 K], добавлен 15.01.2010

  • Значение центральной нервной системы человека в процессе регулирования организма и его связи с внешней средой. Анатомическая структура спинного и головного мозга. Понятие серого и белого вещества, нервных центров, волокон и соединительнотканных оболочек.

    реферат [2,4 M], добавлен 19.01.2011

  • Онтогенез нервной системы. Особенности головного и спинного мозга у новорожденного. Строение и функции продолговатого мозга. Ретикулярная формация. Строение и функции мозжечка, ножек мозга, четверохолмия. Функции больших полушарий головного мозга.

    шпаргалка [72,7 K], добавлен 16.03.2010

  • Строение и функции позвоночника и спинного мозга. Классификация травм позвоночника и спинного мозга, их последствия. Методические приемы рефлекторной терапии. Комплексная реабилитация пациентов с последствиями повреждений позвоночника и спинного мозга.

    дипломная работа [2,2 M], добавлен 29.05.2012

  • Исследование строения мозгового отдела. Оболочки головного мозга. Характеристика групп черепно-мозговых травм. Открытие и закрытые повреждения. Клиническая картина сотрясения головного мозга. Раны мягких тканей головы. Неотложная помощь пострадавшему.

    презентация [2,9 M], добавлен 24.11.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.