Образование младших школьников
Изучение основных теоретических понятий в подготовительный период обучения грамоте. Определение места внеклассного чтения в подготовке школьника-читателя. Ознакомление с особенностями организации обучения при расширении понятия числа в начальной школе.
Рубрика | Педагогика |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 07.06.2021 |
Размер файла | 972,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Для формирования геометрических представлений работа должна проводится следующим образом: свойства фигур учащиеся выявляют экспериментально, одновременно усваивают необходимую терминологию и навыки; основное место в обучении должны занимать практические работы учеников, наблюдения и работы с геометрическими объектами.
Оперируя разнообразными предметами, моделями геометрических фигур, выполняя большое число наблюдений и опытов, учащиеся подмечают наиболее общие их признаки (не зависящие от материала, цвета, положения, массы и т.п.) .
В методике формирования геометрических представлений важно идти от "вещей" к фигуре (к её образу), а также, наоборот - от образа фигуры к реальной вещи. Это достигается систематическим использованием приёма материализации геометрических образов. Например, прямая линия не только вычерчивается с помощью линейки, представление о ней даёт и край - ребро линейки, натянутая нить, линии сгиба листа бумаги, линия пересечения двух плоскостей (например, плоскости стены и плоскости потолка). Отвлекаясь от конкретных свойств материальных вещей, учащиеся овладевают геометрическими представлениями. Так, например, можно видоизменять способ деления многоугольника отрезком на части. Вначале это может быть перегибание бумажного многоугольника.
В первом классе в основном завершается первоначальное ознакомление с фигурами и их названиями. Это делается на основе рассмотрения окружающих вещей, готовых моделей и изображений фигур. У детей постепенно вырабатывается схема изучения фигур, схема анализа и синтеза, облегчающая усвоение свойств каждой фигуры.
Значительное место в методике отводится применению приема сопоставления и противопоставления геометрических фигур. В 1 классе это позволяет из множества фигур наглядно выделять множество кругов, множество многоугольников, множество линий и т.д.; во 2 и 3 классах - уточнять свойства фигур, классифицировать их. Большое внимание уделяется противопоставлению и сопоставлению плоских фигур (круг - многоугольник, окружность - круг и т.д.), плоских и пространственных фигур (квадрат - куб, круг - шар и пр.).
Уже при первоначальном ознакомлении детей с геометрическими фигурами в 1 классе дети выполняют умственные операции анализа и синтеза. Важной задачей учителя, определяющей методику обучения в этот момент, является анализ фигуры, на основе которого выделяются ее существенные свойства (признаки) и несущественные.
В процессе обучения возникает потребность применения геометрической и логической терминологии, символики, чертежей. Так, уже во 2 классе введение буквенной символики помогает не только различать фигуры и их элементы, но и является одним из средств формирования обобщений. Например, запись ОК< 5 см говорит о том, что отрезок ОК - любой отрезок, имеющий длину меньшую, чем 5 см.
В 1 классе фигуры применяют наряду с другими материальными вещами как объекты для перечисления. Несколько позже такими объектами становятся элементы фигур, например вершины, стороны, углы многоугольников. Учащиеся постепенно знакомятся с измерением отрезков. Устанавливается прямая связь между отрезками (точками) и числами.
Геометрические фигуры используются при ознакомлении учащихся с долями. В указанных выше случаях открывается больше возможностей органически связать изучение геометрических объектов с арифметическим материалом, включенным в курс математики для 1-4 классов.
Уже в 1-4 классах выполняются простейшие классификации углов (прямые, острые, тупые), многоугольников (по числу углов) и т.д. Изучение родовых и видовых понятий готовит детей к пониманию определений, построенных на указании рода и видовых отличий
Использование упражнений, в которых дети отмечают точки, принадлежащие или не принадлежащие фигуре или нескольким фигурам, помогает в дальнейшем трактовать геометрическую фигуру как множество точек. А это позволяет более осознанно выполнять операции деления фигуры на части или получение фигуры из других (складывание), т.е. выполнять по существу операции объединения, пересечения, добавления над точечными множествами.
Важной общей методической линией осуществления связи в изучении геометрического материала с остальными вопросами курса начальной математики является, таким образом, неявная опора на теоретико-множественные и простейшие логико-математические представления в изучении фигур, их отношений, свойств .
Общим методическим приемом, обеспечивающим прочные геометрические знания, является формирование пространственных представлений через непосредственное восприятие учащимися конкретных реальных вещей; материальных моделей геометрических образов.
Общая характеристика методики изучения геометрических величин младшими школьниками.
Одним из важных методических принципов изучения геометрического материала, является связь его с другими предметами: с информатикой, изобразительным искусством, трудом, окружающим миром. “Математика есть, наука о количественных отношениях и пространственных формах действительного мира”(Энгельс). Обе эти стороны математики должны быть тесно связанны между собой, взаимно дополнять и обеспечивать друг друга.
Величина, так же как и число, является основным понятием курса математики начальных классов, в задачу которого входит формирование у детей представления о величине как о некотором свойстве предметов и явлений, которое прежде всего связано с измерением.
В начальных классах рассматриваются величины: длина, площадь, масса, емкость, время и др. учащиеся должны получить конкретные представления об этих величинах, ознакомиться с единицами их измерения, овладеть умениями измерять величины, научиться выражать результаты измерения в различных единицах, выполнять арифметические действия над величинами.
Изучение величин имеет большое значение, так как понятие величины является важнейшим понятием математики. Каждая изучаемая величина - это некоторое обобщенное свойство реальных объектов окружающего мира. Упражнения в измерениях развивают пространственные представления, вооружают учащихся важными практическими навыками, которые широко применяются в жизни. Следовательно, изучение величин - это одно из средств связи обучения с жизнью .
В процессе изучения темы важно добиться, чтобы учащиеся научились четко дифференцировать такие тесно связанные между собой, но разные по своей сути понятия, как "величина" и "число". Хотя формирование представлений о той или иной конкретной величине и о способах ее измерения имеет свои особенности, тем не менее, целесообразно выделить общие этапы, которые имеют место при изучении каждой из величин:
1. Выяснение и уточнение имеющихся у детей представлений о данной величине (обращение к опыту ребенка).
2. Сравнение однородных величин (визуально, с помощью ощущений, наложением, приложением, путем использования различных мерок).
3. Знакомство с единицей измерения данной величины и с измерительным прибором.
4. Формирование измерительных умений и навыков.
5. Сложение и вычитание однородных величин, выраженных в единицах одного наименования.
6. Знакомство с новыми единицами величины, перевод однородных величин, выраженных в единицах одних наименований, в другие, перевод величин, выраженных в единицах одного наименования, в величины, выраженные в единицах двух наименований, и наоборот.
7. Сложение и вычитание величин, выраженных в единицах двух наименований.
8. Умножение и деление величины на число.
С целью формирования представлений о разного рода величинах проводятся практические работы, используются упражнения, применяются демонстрационные и индивидуальные наглядные средства, при этом варьируются коллективные, индивидуальные и групповые формы работы на уроке .
Знакомство с величинами и единицами их измерения имеет не только практическое значение: оно предоставляет большие возможности для формирования умения видеть проблему и находить пути ее решения, тем самым способствуя развитию познавательных способностей учащихся.
Большое значение при ознакомлении с величиной имеет использование знаний, умений и навыков, приобретаемых учащимися в связи с изучением фигур и операций над фигурами (деление фигур на части, составление фигур из других). И наоборот, использование представлений о величине, ее свойствах и измерении в процессе формирования понятия "фигура" .
Так, например, на основе представлений о площадь фигуры дети знакомятся с важнейшим свойством, которое состоит в том, что площадь фигуры, составленной из нескольких частей, равна сумме площадей этих частей.
Трудность обучения состоит в том, что учителям нелегко дифференцировать материал из учебников.
По учебнику "Математика. 2 класс" авторов Н.Б. Истоминой и И.Б. Нефедовой дети изучают площадь фигуры, способы сравнения площадей с помощью различных мерок, единицы площади (1 см2, 1 дм2, 1 м2 ), измерение площадей фигур, палетка, площадь и периметр прямоугольника. Изучение этих вопросов используется для разъяснения смысла действий умножения и деления, свойств этих действий, а также для формирования табличных навыков умножения и деления .
В результате изучения предложенной темы учащиеся должны знать: способы сравнения и измерения площадей, единицы площади ( 1 см2, 1 дм2, 1 м2) - и соотношения между ними, способы вычисления площади и периметра прямоугольника; должны уметь: сравнить площади данных фигур с помощью различных мерок, измерять площадь прямоугольника с помощью палетки. Вычислять площадь и периметр прямоугольника(Приложение2).
Длина отрезка.
Первые представления о длине как свойстве предметов у детей возникают задолго до школы. К началу обучения в школе дети правильно устанавливают отношения: длиннее - короче, шире - уже, дальше - ближе и т.п., если различия в этом плане ярко выражены, а по другим свойствам предметы сходны(Приложение 3).
Для формирования измерительных навыков включается система разнообразных упражнений. Это измерение и черчение отрезков; сравнение отрезков, чтобы ответить на вопрос: на сколько сантиметров длиннее один отрезок, чем другой; увеличение и уменьшение их на несколько сантиметров. В процессе этих упражнений у учащихся формируется понятие длины как числа сантиметров, которые укладываются в данном отрезке. Позднее, при изучении нумерации чисел в пределах 100, вводятся новые единицы измерения - дециметр, а затем метр. Работа проходит в таком же плане, как и при знакомстве с сантиметром. Затем устанавливают отношения между единицами измерения (сколько сантиметров содержится в 1 дм, в 1м, сколько дециметров в 1 м). Дети упражняются в измерении с помощью двух различных мерок (например, длина крышки парты 4дм 5см, длина доски 2м 8дм). С этого времени приступают к сравнению длин на основе сравнения соответствующих отрезков.
Затем рассматривают преобразование величин: замену крупных единиц мелкими (3дм 5 см = 35см) и мелких единиц крупными (48см = 4дм 8см).
Постепенно учащиеся осознают, что числовое значение длины зависит от выбора единицы измерения (например, длина одного и того же отрезка может быть обозначена и как 3 дм, и как 30см).
Сравнение двух длин, выраженных в единицах двух наименований, теперь выполняют на основе преобразования их и сравнения числовых значений, при которых стоят одинаковые наименования единиц измерения (4дм 8см > 39см, так как 48см > 39см, или 4дм 8см > 3дм 9см) .
Во II классе знакомство с единицами длины продолжается: дети знакомятся с миллиметром, а позднее с километром.
Введение миллиметра обосновывается необходимостью измерять отрезки, меньше 1см. Наглядное представление о миллиметре дети получают, рассматривая деление на обычной масштабной линейке или на миллиметровой бумаге. Сразу же устанавливается, сколько миллиметров содержится в 1 см, и дети приступают к измерениям с точностью до миллиметра (с помощью циркуля, а также с помощью линейки). При этом особое внимание обращается на то, чтобы дети правильно располагали глаз при совмещении концов отрезка с делениями на шкале линейки. Для формирования измерительных навыков включаются упражнения на измерения не только на уроках математики, но и на других уроках .
При знакомстве с километром полезно произвести практические работы на местности, чтобы сформировать представление об этой единицы измерения (Приложение 4).
Начиная со II класса, дети в процессе решения задач знакомятся с нахождением длины косвенным путем. Например, зная длину одного класса и число классов на одном этаже, вычисляют длину здания школы; зная высоту комнат и количество этажей дома, можно вычислить приблизительно высоту дома и т.п. Позднее, в III классе, после ознакомления со скоростью движения и изучения связи между величинами скорость - время - расстояние, учащиеся узнают о том, что можно вычислять расстояние, зная скорость и время движения .
Особенности решения задач на построение геометрических фигур.
Особое содержание геометрического материала, включенного в программу и реализованного в системе тщательно отобранных задач, направлено на формирование достаточно полной системы геометрических представлений (включающей образы геометрических фигур, их элементов, отношений между фигурами, их элементами).
На этой основе формируются пространственные представления и воображение, развивается речь и мышление учащихся, организуется целенаправленная работа по формированию важных практических навыков.
Учитель должен систематически проводить работу по формированию умений и навыков применения чертежных и измерительных инструментов, построению изображений геометрических фигур, умений описывать словесно процесс работы, выполняемой учеником, и ее результат, умений применять усвоенную символику и терминологию. Важным методическим условием реализации этой системы является сначала осознание выполнения действий и лишь за тем автоматизация этих действий .
Результатом обучения в 1-3 классах должно быть формирование первоначальных представлений о точности построений и измерений.
Работа по формированию навыков должна проводиться распределено и постепенно, почти на каждом уроке (и не только на уроках математики). Это создает условие для более частого применения этих навыков в учебной и практической деятельности, обеспечивает необходимую их прочность.
Опыт показывает, что выполнение этих операций, особенно на первых порах, связанно с большими трудностями для учащихся. Это объясняется отсутствием у них навыков владения карандашом и небольшой моделью сантиметра (мышцы пальцев ещё недостаточно тренированы).
Именно поэтому с целью получения важных для дальнейшей работы навыков необходимо достаточно долго и систематически повторять указанные упражнения. Процесс откладывания модели сантиметра «прошагивание» от одного конца до другого конца отрезка - создаётся у детей те представления, которые в дальнейшем предотвратят многие ошибки, встречающихся при измерениях.
На следующем этапе формирования навыков измерения отрезков упомянутых выше две задачи решаются с помощью масштабной линейки, на которой не нанесены цифры. Построение отрезков следует связать с приобретением навыков обращения с чертёжными инструментами (линейка, угольник, циркуль). Чертёж - это язык техники. В начале при вычерчивание отрезков в тетради концы отрезков могут совпадать с точками пересечения линии листа тетради. Ученики отмечают две точки, прикладывают линейку, в зависимости от расположения точек. Позднее точки, обозначающие концы отрезков, могут быть поставлены вне линий листа тетради. Это готовит детей к вычерчиванию отрезков на нелинованной бумаге .
Знакомство с углами удобно провести на шарнирной модели. Можно сначала дать образ прямого угла. Путём двойного перегибания листа бумаги ученики получают модель прямого угла, пользуясь которой выполняют различные упражнения: накладывают эту модель на углы, тетради, книги и убеждаются, что эти углы прямые; строят прямые углы на клетчатой и нелинованной бумаге. Ученики находят прямые углы на различных предметах. Необходимо строить прямые углы в различном положении на плоскости. Для этого раздаются листочки с начерченными на них лучами и предлагается провести ровные лучи так, чтобы образовались прямые углы. Учащиеся строят их при помощи модели прямого угла и при помощи чертёжного треугольника. Раздвигая или сдвигая стороны прямого угла, переходят к тупому, острому. Вводится понятие о сторонах угла, об его вершинах. На основе предварительной работы по ознакомлению учащихся с прямым углом уточняются представление о прямоугольнике - многоугольнике, у которого все углы прямые.
Эту работу целесообразно начать с рассмотрения различных многоугольников, у которых один, два, три и т.д. угла - прямые .
Для построения многоугольников, содержащих прямые углы, в 1 классе следует использовать линии клетчатой бумаги, образующие прямые углы.
Наблюдение и построение различных многоугольников наглядно убеждает детей в том, что только у четырёхугольника все углы могут быть прямыми. Такие четырёхугольники называются прямоугольниками.
В результате измерений сторон прямоугольников выясняется, что есть прямоугольники, у которых все стороны равны между собой.
Такие прямоугольники называют квадратами. Большое значение при этом имеют упражнения, в которых по заданным точкам - вершинам, нужно построить прямоугольник (квадрат). Вначале задаются все четыре вершины, затем три - в этих случаях задача имеет единственное решение .
Учащимся рассказывают, что для вычерчивания окружности есть специальный инструмент - циркуль. В момент показа работы циркуля, когда ещё не вся окружность начерчена, полезно заметить, что одна ножка циркуля(с силой) стоит на одном месте, неподвижна. Эту точку называют центром окружности. Другая ножка циркуля движется, и её конец вычерчивает линию. Эту линию называют окружность. Полезно показать учащимся, как можно вычертить окружность с помощью планки (картонной полоски, кусочка шпагата). Полоска прибивается гвоздиком к доске. К другому концу прикладывается мел. Затем учащиеся знакомятся с радиусом окружности. Для этого на окружности отмечают, какую - ни будь точку, и соединяют эту точку отрезком с центром. Отрезок, соединяющий точку окружности с центром, называют радиусом .
Симметрия.
Ознакомление младших школьников с понятием осевой симметрии является новым для нашей методики начального обучения вопросом и при соответствующей методической обработке становится важным средством развития пространственных представлений детей, их пространственного воображения (Приложение 7).
Выполняя упражнения, учащиеся научатся показывать пары симметрических предметов или их частей, точек, отрезков и других фигур, изображать фигуру, симметричную данной относительно этой оси, познакомятся с фигурами, имеющими ось (оси) симметрии.
Прямоугольники.
Определения прямоугольника и квадрата вводятся после сравнения этих фигур между собой.
Дети рассматривают изображения прямоугольника и квадрата. На вопрос о том, что общего у этих фигур, дети могут ответить так: обе фигуры - многоугольники (это верно); это четырехугольники (тоже верно). Вероятно, учащиеся обратят внимание на углы этих четырехугольников и даже по виду смогут определить, что в каждом четырехугольнике все углы прямые. Если этого не произойдет, учитель должен предложить второклассникам сравнить углы четырехугольников и определить с помощью модели прямого угла, что все углы в обоих многоугольниках - прямые.
Далее выясняются различия четырехугольников. Учащиеся подводятся к мысли о том, что нужно сравнить в каждой фигуре длины сторон. Итак, в результате сравнения учащиеся выяснят, что в прямоугольнике стороны разной длины, а в квадрате все стороны имеют одну и ту же длину (длины всех сторон равны).
Прямоугольником называется такой четырехугольник, у которого все углы прямые .
Построение прямоугольников.
Прямоугольник легко построить, используя клетчатый фон тетради. Однако часто ученику бывает необходимо построить прямоугольник на чистом или цветном листе бумаги или картона. Поэтому на уроках математики учащимся 2 класса показывают способ построения прямоугольника (квадрата) с помощью угольника и линейки. Для этого каждому ученику потребуется угольник со шкалой и линейка.
На рисунках, предоставленных в учебнике, показаны этапы построения прямоугольника (квадрата). Но на уроке целесообразно каждый из этапов дублировать на классной доске: рассмотрев первый этап построения прямоугольника, сделать то же действие на доске; при этом все этапы построения выполняются на одном и том же рисунке.
Рассмотрев способ построения прямоугольника, выполните несколько тренировочных упражнений. Затем переходят к рассмотрению способа построения квадрата и снова предложите упражнения тренировочного характера.
Надо стремится, чтобы дети сами рассказывали, какие действия и в каком порядке они выполняют при построении каждой фигуры, или какими инструментами они пользуются на каждом шаге построения (Приложение 8).
Периметр.
Во 2 классе при нахождении периметра треугольника рассматривают два способа:
I способ: периметр треугольника - это сумма длин всех сторон;
II способ: на луче откладывают с помощью циркуля последовательно длины сторон треугольника, а затем измеряют длину получившегося в итоге отрезка .
Построение окружности.
Окружность представляет собой границу круга, а круг - это окружность вместе с внутренней областью, ограниченной этой окружностью. В этом и состоит различие между кругом и окружностью.
Для примера можно изобразить какой-нибудь круг и показать, что круг так же имеет центр и радиус. Однако, в отличие от окружности, круг можно закрасить.
Методические особенности изучения площади геометрических фигур и единиц ее измерения на уроках математики в начальной школе.
Методика формирования представлений о площади фигуры строится в соответствии с общей методикой формирования представлений о величинах. При этом изучение понятия площади проводится с опорой на привычные для детей представления о том, что каждая фигура занимает определенное - большее или меньшее - место на плоскости.
Для того чтобы учащиеся освоили процесс измерения площади полезно раздать им геометрические фигуры и предложить им измерить их площади, пользуясь моделью квадратного сантиметра. Это задание особенно важно, так как в процессе его выполнения учащиеся осознают, что измерить площадь фигуры - значит узнать, сколько квадратных сантиметров она содержит. Учащиеся практически убеждаются, что укладывать модель квадратного сантиметра в фигуре долго и неудобно - гораздо удобнее использовать прозрачную бумагу, на которой нанесена сетка из квадратных сантиметров. Таким образом, учащиеся знакомятся с палеткой и правилами пользования ею, упражняются в определении площадей фигур с ее помощью.
При определении площади прямоугольника необходимо также широко использовать практический метод. Это поможет учащимся осознать тот факт, что найти площадь прямоугольника - значит узнать, сколько квадратных сантиметров в нем содержится .
В методике работы над площадью фигуры имеется много общего с работой над длиной отрезка.
Прежде всего, площадь выделяется как свойство плоских предметов среди других их свойств. Уже дошкольники сравнивают предметы по площади и правильно устанавливают отношения "больше", "меньше", "равно", если сравниваемые предметы резко отличаются друг от друга или совершенно одинаковые. При этом дети пользуются наложением предметов или сравнивают их на глаз, сопоставляя предметы по занимаемому месту на столе, на земле, на листе бумаги и т.п. однако, сравнивая предметы, у которых форма различна, а различие площадей не очень четко выражено, дети испытывают затруднения. В этом случае они заменяют сравнение по площади сравнением по длине или по ширине предметов, т.е. переходят на линейную протяженность, особенно в тех случаях, когда по одному из измерений предметы сильно отличаются друг от друга.
В процессе изучения геометрического материала в I - II классах у детей уточняются представления о площади как о свойстве плоских геометрических фигур. Более четким становится понимание того, что фигуры могут быть различными и одинаковыми по площади. Этому способствуют упражнения на вырезание фигур из бумаги, черчение и раскрашивание их в тетрадях и т.п. В процессе решения задач с геометрическим содержанием учащиеся знакомятся с некоторыми свойствами площади. Они убеждаются, что площадь не изменяется при изменении положения фигуры на плоскости (фигура не становится ни больше, ни меньше). Дети многократно наблюдают соотношение между всей фигурой и ее частями (часть меньше целого), упражняются в составлении различных по форме фигур из одних и тех же заданных частей (т.е. построение равносоставленных фигур). Учащиеся постепенно накапливают представления о делении фигур на неравные равные части, сравнивая наложением полученные части, сравнивая наложением полученные части. Все эти знания и умения дети приобретают практическим путем попутно с изучением самих фигур(Приложение 11).
Однако не всегда так легко установить, какая из двух фигур имеет большую (меньшую) площадь или они одинаковы по площади. Чтобы показать это учащимся, можно предложить им сравнить вырезанные из бумаги прямоугольник и квадрат, незначительно отличающиеся по площади, например: размеры квадрата 4х4 дм, а прямоугольника 5х3 дм, при этом фигуры с обратной стороны разбиты на квадратные дециметры. Сначала учащиеся пытаются сравнить эти фигуры на глаз, а также путем наложения. Однако оба способа не помогают детям решить вопрос убедительно. Выслушав различные предположения, учитель поворачивает фигуры той стороной, на которой сделана разбивка на квадраты, и предлагает сосчитать, сколько одинаковых квадратов содержит каждая фигура. На этой основе дети устанавливают, площадь какой фигуры больше, а какой меньше. Аналогичные упражнения на сравнивание площади фигур, составленных из одинаковых квадратов, выполняются по учебнику, а также по чертежам, данным на доске. Дети убеждаются в том, что если фигуры состоят из одинаковых квадратов, то площадь той фигуры больше (меньше), которая содержит больше (меньше) квадратов. Полезно на этом же уроке рассмотреть такой случай, когда разные по форме фигуры имеют одинаковую площадь, так как содержат одинаковое число квадратов. На последующих уроках включаются упражнения на подсчет квадратов, содержащихся в заданных фигурах, предлагается начертить в тетрадях фигуры, которые состоят из заданного числа квадратов (клеточек тетради). В процессе таких упражнений начинает формироваться понятие о площади как о числе квадратных единиц, содержащихся в геометрической фигуре .
На следующем этапе учащихся знакомят с первой единицей площади - квадратным сантиметром. Учащиеся чертят в тетрадях, вырезают из бумаги в клеточку квадраты со стороной 1см. учитель сообщает: "это единица площади - квадратный сантиметр". Используя бумажные модели квадратного сантиметра, дети составляют из них различные геометрические фигуры и находят подсчетом их площадь. Сравнивая площади составленных фигур, дети еще раз убеждаются, что площадь той фигуры больше (меньше), которая содержит больше (меньше) квадратных сантиметров. Площади фигур содержащих одинаковое число квадратных сантиметров, равны, хотя фигуры могут не совмещаться наложением. Эффективен на этом этапе прием сопоставления знакомых детям величин - длины отрезка и площади фигуры, который помогает предупредить смещение этих величин. Выполняя конкретные упражнения, обнаруживают некоторое сходство и существенное различие этих величин: сантиметр - единица длины; квадратный сантиметр - единица площади; длина отрезка - число сантиметров, которые содержаться в данном отрезке; площадь фигуры - число квадратных сантиметров, содержащихся в этой фигуре.
В дальнейшем наглядное представление о квадратном сантиметре и понятие о площади фигур закрепляются. Включаются упражнение на площади фигур, разбитых на квадратные сантиметры. Предлагается при подсчете квадратных сантиметров группировать их по рядам или столбцам, чтобы ускорить нахождение их общего числа. Рассматриваются и такие фигуры, которые на ряду с целыми квадратными сантиметрами содержат и нецелые - половины, а также доли больше или меньше, чем половина квадратного сантиметра. Следует также ознакомить учащихся с нахождением приближенной площади фигуры таким способом: сосчитать все нецелые квадратные сантиметры и общее число их разделить на два, затем полученное число сложить с числом целых квадратных сантиметров, которые содержатся в данной фигуре . Для нахождения площади геометрических фигур, не разделенных на квадратные сантиметры, используют палетку. Палетка - это прозрачная пластинка, разбитая на равные квадраты. Сетка может быть нанесена на кальку или состоять из нитей, натянутых на рамку. На данном этапе используют палетку, каждое деление которой равно квадратному сантиметру.
Наложив палетку на геометрическую фигуру, подсчитывают число целых и нецелых квадратных сантиметров, которые в ней содержатся. Для нахождения площади фигур, начерченных в тетрадях, в качестве палетки используют разлиновку тетрадей. Каждый раз подчеркивают, что найденная площадь равна приблизительно такому - то числу (около 20 см2).
В это же время приступают к сопоставлению площади и периметра многоугольников с тем, чтобы дети не смешивали эти понятия, а дальнейшем четко различали способы нахождения площади и периметра прямоугольника. Выполняя практические упражнения с геометрическими фигурами, дети подсчитывают число квадратных сантиметров и тут же измеряют периметр многоугольника в сантиметрах.
На следующем этапе учащиеся знакомятся с приемом вычисления площади прямоугольника (квадрата). Сначала рассматривают прямоугольники, которые уже разделены на квадратные сантиметры. Их площадь находят путем подсчета квадратных сантиметров в одном ряду, а затем полученном число умножают на число рядов. Очень важно при этом установить соответствие между длиной прямоугольника и числом квадратных сантиметров, прилегающих к длине; шириной прямоугольника и числом рядов.
Затем дети чертят прямоугольник по заданным длинам сторон, разбивают его на ряды, а один ряд на квадраты и снова убеждаются в соответствии: если длина 4 см, то в одном ряду, прилегающем к этой стороне, содержится 4 кв.см, если ширина 3 см, то таких радов оказывается 3. число квадратных сантиметров равно произведению чисел 4 и 3. делается вывод: чтобы вычислить площадь прямоугольника, нужно знать его длину и ширину (в одинаковых единицах) и найти произведение этих чисел.
В процессе решения задач на вычисление площади и периметра прямоугольников следует показать, что фигуры, имеющие одинаковую площадь, могут иметь неодинаковые периметры, и что фигуры, имеющие одинаковые периметры, могут иметь неодинаковые площади. Например, это легко наблюдать при заполнении таблицы вида:
Длина |
7 см |
6 см |
5 см |
4 см |
|
Ширина |
1 см |
2 см |
3 см |
4 см |
|
Периметр |
16 см |
16 см |
16 см |
16 см |
|
Площадь |
7 см2 |
12 см2 |
15 см2 |
16 см2 |
Далее учащиеся знакомятся с дм2. Как и при введении см2, прежде всего формируется наглядный образ новой единицы: дети чертят на клетчатой бумаге квадрат со стороной 1 дм и затем вырезают его, составляют фигуры из нескольких квадратных дециметров, называя их площадь и периметр. Устанавливается соотношение между квадратным дециметром и квадратным сантиметром: 1 дм2 = 100 см2. для этого просто вычисляется площадь квадрата со стороной 1 дм = 10 см (10*10 = 100). Учащиеся сами вычисляют площадь квадрата со стороной 1 дм в квадратных сантиметрах и записывают: 1 дм2 = 100 см2 затем дети учатся заменять мелкие единицы крупными и наоборот. Для достижения возможности решать задачи с данными, полученными путем непосредственных измерений при выполнении практических работ, необходимо выполнить ряд упражнений: "Выразить в см2: 2 дм2; 1 дм2 74 см2 и т.п. Выразить в дм2 и см2: 570 см2; 1250 см2" .
На следующем этапе аналогично рассматривается квадратный метр. Обращается особое внимание на решение практических задач. Должна быть составлена и усвоена таблица всех изученных единиц площади и их отношений.
Наряду с решением задач на нахождение площади прямоугольника по данным длине и ширине решают обратные задачи на нахождение одной из сторон по известной площади и другой стороне прямоугольника.
Вывод: Задача развития у младших школьников геометрических представлений, способности к обобщению состоит в том, чтобы научить их видеть геометрические образы в окружающей обстановке, выделять их свойства, конструировать, преобразовывать и комбинировать фигуры, изображать их на чертеже, выполнять в необходимых случаях измерения.
Учебные задания практического характера являются средством и условием формирования способности использовать универсальные знания и умения, развития интереса к исследованию проблем окружающего мира.
Включение заданий практического характера в учебную деятельность позволяет использовать приобретённые знания и умения в практической деятельности и повседневной жизни для ориентировки в окружающем пространстве; сравнения и упорядочения объектов по разным признакам;
Решения задач, связанных с бытовыми жизненными ситуациями; оценки размеров предметов «на глаз»; самостоятельной конструкторской деятельности.
87. Пути организации творческой деятельности на уроках литературного чтения: метод «творческого чтения» (по Н.И. Кудряшёву); характеристика творческих приемов деятельности на уроках литературного чтения (драматизация, творческий пересказ, словесное и графическое рисования и т.д.)
Можно считать общепризнанным положение о том, что творчество учащихся (и руководство педагогов этой деятельностью) имеет своей конечной целью не столько создание определенного продукта, имеющего общественно полезную значимость, сколько познавательный и воспитательный эффект - формирование знаний, умений интересов и склонностей, развитие способностей личности.
Педагогический аспект творчества характеризуется рядом субъективных факторов: спецификой самого процесса творчества, эмоциональностью, развитием личности индивида, ростом его мастерства. Эти факторы в полной мере присущи и творческой деятельности учащихся. Поэтому именно педагогический аспект придает важность творчеству в школьном возрасте. Различные виды любительских увлечений играют огромную роль в образовании, воспитании и развитии подрастающего поколения, поэтому необходимо включение школьников в творческую деятельность как в процессе изучения основ наук, так и во внеклассной работе.
Опыт учителей, организующих творческую деятельность учащихся, а также проводимые в этом направлении специальные исследования, позволяет указать основные условия, необходимые для развития творческих способностей учащихся и рекомендовать оправдавшие себя на практике пути решения этой проблемы. К ним относятся
- приложения в учебном процессе методов, содействующих развитию у учащихся логического мышления, инициативы, активности и самостоятельности;
- включение элементов исследования в различные виды учебной деятельности учащихся;
- организация индивидуальных учебных занятий творческого характера.
Беда нашей школы и нашего общества в том, что целые поколения прошли мимо искусства, в том, что литература в нашей школе с самых первых классов преподавалась не как искусство, а лишь с целью познания различных явлений, событий, праздников и т.п. Методика была направлена на главным образом на усвоение этих знаний.
В методике долгое время ведется борьба с логилизированным чтением художественной литературы. При логилизированном чтении главное внимание учителя и учащихся сосредотачивается на уяснении сюжета 0 событийных связей с помощью многочисленных вопросов: что, где, куда, почему? С помощью этих вопросов выявляются логические связи произведений, и это является основной работой над его пониманием. Далее идет словарная работа: уясняются все непонятные, с точки зрения логики познания, слова, в том числе и художественные средства - опять же путем их логического толкования, то есть художественные средства - опять же путем их логического толкования, то есть художественное слово перевести на бытовой, нехудожественный язык, именуя и заглушая тем самым его художественный смысл. Устное рисование, которое тоже превращается часто в перевод художественного образа в его пересказ простыми словами, мало что добавляет к пониманию художественного произведения.
Учебные программы предполагают такое содержание учебных книг, их структуру и технологию обучения, которые строятся на основе двух ведущих принципов: художественно-эстетического и литературоведческого.
Художественно-эстетический принцип определяет стратегию отбора произведений для чтения и вводит а круг чтения младших школьников преимущественно художественные тексты. Он акцентирует внимание учителя и детей на том, что перед ними не просто познавательные интересные тексты, а именно произведения словесного искусства, которые раскрывают перед читателем богатство окружающего мира и человеческих отношений, рождают чувство гармонии, красоты, учат понимать прекрасное в жизни, формируют в ребенке собственное отношение к действительности.
Литературоведческий принцип в его специфическом преломлении к особенностям начального этапа обучения реализуется при анализу художественного текста. Он требует, чтобы на первый план был выдвинут художественный образ как общий язык искусства в целом и литературы в частности.
Отличной особенностью программы литературного чтения является введение ее содержания раздела: «Опыт творческой деятельности и опыт направленного эмоционально-чувственного отношения к действительности». Введение такого раздела в программу привело к включению в процесс обучения тех приемов и способов деятельности детей, которые помогают им воспринимать художественное произведение на основе проявления собственных творческих способностей, ибо чтение прежде всего сотворчество. Литература относится к наиболее сложному, интеллектуальному виду искусства, восприятие произведений которого носит опосредованный характер, при чтения человек получает тем большее наслаждение художественными образами, чем ярче оказываются представления, которые возникают у него в процессе чтения. Характер и полнота восприятия литературного произведения во многом определяются конкретно-чувственным опытом и умением ребенка воссоздать словесные образы, соответствующие авторскому тексту.
Таким образом, курс литературного чтения преследует решение следующих задач:
- развивать у детей способность полноценно воспринимать художественное произведение, сопереживать героям, эмоционально откликаться на прочитанное;
- учить детей чувствовать и понимать образный язык художественного произведения, развивать образное решение;
- формировать умение воссоздать художественные образы литературного произведения, развивать творческое и воссоздающее воображение учащихся;
- обеспечивать развитие речи учащихся и активно формировать речевые умения, навыки чтения, слушания и др.
Как мы видим, все вышеперечисленные задачи решаются только на основе активной творческой деятельности учащихся при помощи воображения.
Известно, что искусство возникло в истории цивилизации для того, чтобы развивать и поддерживать фундаментальную основополагающую человеческую способность - воображение. Человек, лишенный воображения, не может понять другого человека. Чтобы действовать в разных ситуациях, возникающих на каждом шагу, нужно воображение - нужно вообразить, представить себя в иной ситуации.
Чтобы продвигать детей в развитии, надо отказаться от известных стереотипов работы на уроках чтения и направить ее так, чтобы ученики воспринимали и ценили художественное слова как незаменимое, над глубоким содержанием которого надо думать. Так, чтобы чтение каждого нового произведения или перечитывания известного ранее, было бы для них новым открытием, вызывало работу души - чувств, воображения, затрагивало их жизненный опыт, то есть захватывало бы их личность.
По определению Н.И. Кудряшева, метод творческого чтения тесно связан с основной задачей, решаемой учителем на уроке литературы: «развивать и совершенствовать глубокое, возможно ,более активное и полное, творческое восприятие художественного произведения, художественные переживания школьников».
Специфика метода творческого чтения заключается в активизации художественного восприятия, художественных переживаний, в формировании средствами искусства художественных склонностей и способностей.
Метод творческого чтения проявляется большей частью через следующие приемы: 1) выразительное (в идеале - художественное) чтение учителя, чтение мастеров художественного слова, отдельных сцен из пьес в исполнении актеров (в записях, в радио- и телепередачах); 2) обучение выразительному чтению учащихся; 3) чтение учителем художественного текста с комментариями (комментированное чтение) и 4) его слово, имеющее целью обеспечить правильное и возможно более глубокое, эмоциональное восприятие произведения; 5) беседа, имеющая целью выяснить непосредственные впечатления учащихся от прочитанного произведения и направляющая их внимание на существенные его идейные и художественные особенности, или постановка той или иной - художественной, нравственной, общественно-политической - проблемы, непосредственно вытекающей из прочитанного произведения; 6) слово учителя или беседа после изучения произведения, имеющие целью активизировать художественные переживания учащихся, обогащенные в процессе его изучения.
Метод творческого чтения способствует развитию наблюдательности, умению видеть и слышать явления жизни, умению найти верные слова и выражения для передачи своих впечатлений путем выполнения различного рода творческих заданий: обучение творческим работам по живым, непосредственным наблюдениям, по картинам, по кинокартинам, спектаклям…, только что прочитанным книгам… - все это проявление метода творческого чтения.
Все эти приемы предполагают соответствующие виды деятельности учащихся: чтение произведений дома и в классе, выразительное (в идеале - художественное) чтение, заучивание наизусть, слушание художественного чтения, составление плана, заголовки которого стимулируют образное, эмоциональное воспроизведение отдельных эпизодов, сцен произведения, близкие к тексту и сжатые пересказы, художественное рассказывание, устные и письменные отзывы о только что прочитанном произведении, инсценировки, составление сценариев, критические заметки, рассматривание иллюстраций и оценка их, сочинения разного жанра по картинам, по живым впечатлениям.
Т.о. каждый примененный учителем прием должен быть связан в соответствующим видом деятельности учащихся.
Необходимо дать некоторые пояснения к термину «художественное рассказывание».
Художественное рассказывание - это один из видов искусства устного слова, заключающийся в передаче слушающим идейно-художественного содержания повествовательного прозаического произведения в живой собственной речи рассказчика с целью вызвать у них те представления, мысли и чувства, которые возникают у самого исполнителя в процессе его творчества. В основе художественного рассказывания лежат те же принципы, что и в основе выразительного чтения. Однако, если чтец точно передает текст автора, то рассказчик - всегда импровизирует.
Иногда рассказывание называют художественным пересказом. По своей структуре оно действительно является воспроизведением текста в той последовательности, в которой он воспринимается при чтении, но существенно отличается от пересказа, опирающегося на репродуктивную деятельность. Рассказывание возможно только в том случае, если исполнитель овладеет и передаст в речи не только текст, но и подтекст литературного произведения. Главное в художественном рассказывании - его коммуникативная функция, выражающаяся в умении рассказчика проявить свое личное отношение к исполняемому тексту, воздействовать словом на ум, чувства и эмоции слушателей, полностью убедить их своим рассказом. Рассказывание не может быть нехудожественным. Художественность, т.е. образность, живость, воздейственность, - отличительная черта этого вида деятельности.
88. Педагогический процесс в начальной школе
Сущность, закономерности и принципы педагогического процесса
Педагогический процесс - одна из важнейших, основополагающих категорий педагогической науки. Под педагогическим процессом понимается специально организованное, целенаправленное взаимодействие педагогов и учащихся (воспитанников), направленное на решение развивающих и образовательных задач. Педагогический процесс призван обеспечить выполнение социального заказа общества на образование, реализацию положения Конституции РФ о праве на образование, а также действующего законодательства об образовании.
Педагогический процесс - это система, и как всякая система он имеет определенную структуру. Структура[41] - это расположение элементов (компонентов) в системе, а также связи между ними. Понимание связей очень важно, так как, зная, что с чем и как связано в педагогическом процессе, можно решать задачу улучшения организации, управления и качества данного процесса. Компонентами педагогического процесса являются:
* цель и задачи;
* содержание;
* организация и управление им;
* методы осуществления;
* результаты.
Педагогический процесс - это трудовой процесс, и, как в других трудовых процессах, в педагогическом выделяют объекты, средства и продукты труда. Объект трудовой деятельности педагога - это развивающаяся личность, коллектив воспитанников. Средства (или орудия) труда в педагогическом процессе очень специфичны; к ним относятся не только учебно-методические пособия, демонстрационные материалы и т. п., но и знания педагога, его опыт, его духовные и душевные возможности. На создание продукта педагогического труда собственно и направлен педагогический процесс - это знания, умения и навыки, полученные учащимися, уровень их воспитанности, культуры, т. е. уровень их развития.
Закономерности педагогического процесса - это объективные, существенные, повторяющиеся связи. В такой сложной, большой и динамичной системе, как педагогический процесс, проявляется большое количество разнообразных связей и зависимостей. Наиболее общие закономерности педагогического процесса следующие:
динамика педагогического процесса предполагает, что все последующие изменения зависят от изменений на предыдущих этапах, поэтому педагогический процесс носит многоступенчатый характер - чем выше промежуточные достижения, тем весомее конечный результат;
темп и уровень развития личности в педагогическом процессе зависят от наследственности, среды, средств и способов педагогического воздействия;
эффективность педагогического воздействия зависит от управления педагогическим процессом;
продуктивность педагогического процесса зависит от действия внутренних стимулов (мотивов) педагогической деятельности, от интенсивности и характера внешних (общественных, моральных, материальных) стимулов;
эффективность педагогического процесса зависит, с одной стороны, от качества педагогической деятельности, с другой стороны - от качества собственной учебной деятельности учащихся;
педагогический процесс обусловлен потребностями личности и общества, материально-техническими, экономическими и другими возможностями общества, морально-психологическими, санитарно-гигиеническими, эстетическими и другими обстоятельствами, при которых он осуществляется.
Закономерности педагогического процесса находят конкретное выражение в основных положениях, определяющих его общую организацию, содержание, формы и методы, т. е. в принципах[42].
Принципы в современной науке - это основные, исходные положения какой-либо теории, руководящие идеи, основные правила поведения, действия. Дидактика рассматривает принципы как рекомендации, направляющие педагогическую деятельность и учебный процесс - они охватывают все его стороны и придают ему целеустремленное, логически последовательное начало. Впервые основные принципы дидактики сформулировал Я. А. Коменский в «Великой дидактике»: сознательность, наглядность, постепенность, последовательность, прочность, посильность.
Таким образом, принципы педагогического процесса - это основные требования к организации педагогической деятельности, указывающие ее направление и формирующие педагогический процесс.
Задача осмысления и регулирования такой столь разветвленной и многогранной деятельности, как педагогическая, требует разработки достаточно широкого круга норм разной направленности. Наряду с общепедагогическими принципами (например, принципами связи обучения с жизнью и практикой, соединения обучения и воспитания с трудовой деятельностью, гуманистической направленности педагогического процесса и пр.) выделяют и другие группы принципов:
принципы воспитания - рассмотрены в разделе, посвященном воспитанию;
принципы организации педагогического процесса - принципы обучения и воспитания личности в коллективе, преемственности и пр.;
принципы руководства педагогической деятельностью - принципы сочетания управления в педагогическом процессе с развитием инициативы и самостоятельности учащихся, сочетания требовательности к учащимся с уважением к их личности, использования в качестве опоры положительных качеств человека, сильных сторон его личности и пр.;
принципы обучения - принципы научности и посильной трудности обучения, систематичности и последовательности обучения, сознательности и творческой активности учащихся, наглядности обучения, прочности результатов обучения и пр.
В настоящий момент в педагогике нет единого подхода в определении состава и системы принципов педагогического процесса. Например, Ш. А. Амонашвили сформулировал следующие принципы педагогического процесса:
«1. Познания и усвоения ребенком в педагогическом процессе истинно человеческого. 2. Познания ребенком в педагогическом процессе себя как человека. 3. Совпадение интересов ребенка с общечеловеческими интересами. 4. Недопустимости использования в педагогическом процессе средств, способных спровоцировать ребенка на антисоциальные проявления. 5. Предоставления ребенку в педагогическом процессе общественного простора для наилучшего проявления своей индивидуальности. 6. Очеловечивания обстоятельств в педагогическом процессе. 7. Определения качеств формирующейся личности ребенка, его образованности и развития от качеств самого педагогического процесса».[43]
...Подобные документы
Рассмотрение теоретических основ детской игры в контексте процесса обучения. Изучение основных психологических возрастных особенностей младших школьников. Определение возможности использования игры в общем педагогическом процессе в начальной школе.
курсовая работа [76,7 K], добавлен 03.06.2014Цели обучения иностранному языку, поставленные для младших школьников. Психологические особенности младших школьников и формирование навыков в чтении. Требования к организации процесса обучения чтению. Примеры упражнений по обучению технике чтения.
реферат [22,6 K], добавлен 06.01.2011Основной принцип, лежащий в основе чтения и письма и усваиваемый учениками в период обучения грамоте. Проблема слогоделения и основные моменты в изучении звуков. Особенности механизма первоначального чтения, которые следует учитывать при обучении грамоте.
курсовая работа [131,8 K], добавлен 18.10.2010Особенности организации внеклассного чтения в первом классе. Организационно-методическая структура урока внеклассного чтения во втором классе. О целях, задачах, специфике учебно-воспитательной работы с детской книгой. Структура уроков внеклассного чтения.
курсовая работа [34,8 K], добавлен 05.07.2010Сущность проблемного обучения в учебном процессе. Организация проблемного обучения в начальной школе. Формы проблемного обучения и способы его организации. Изучение педагогического опыта использования проблемного обучения на уроке литературного чтения.
курсовая работа [37,5 K], добавлен 23.10.2017Изучение понятия и сущности технологии проектного обучения. Этапы организации проектной деятельности в начальной школе. Требования, предъявляемые к обучению сочетания теоретических знаний и их практического применения для решения конкретных проблем.
курсовая работа [49,5 K], добавлен 11.05.2014Теоретический анализ сущности и основ личностно-ориентированного обучения. Определение оптимального содержания урока как формы реализации личностно-ориентированного обучения младших школьников. Разработка оптимальных приемов обучения младших школьников.
курсовая работа [213,8 K], добавлен 25.04.2011Сущность и задачи интерактивного обучения в начальной школе. Реализация комплекса методов и приемов интерактивного обучения младших школьников на уроках математики. Выявление динамики уровня сформированности универсальных учебных действий школьников.
дипломная работа [931,9 K], добавлен 17.02.2015Психолого-педагогическое обоснование проблемы обучения чтению младших школьников. Особенности обучения в начальных классах. Психологический подход к пониманию сущности чтения. Сопоставительный анализ методов обучения грамоте в истории педагогики.
курсовая работа [52,1 K], добавлен 16.11.2009Психолого-педагогические основы формирования познавательных способностей в ходе обучения грамоте у младших школьников посредством дидактической игры. Формирование познавательных универсальных учебных действий младших школьников в условиях реализации ФГОС.
дипломная работа [401,3 K], добавлен 06.03.2015Возрастные особенности младших школьников. Сущность понятий "творческий процесс", "творческие способности". Повышение уровня развития творческих способностей младших школьников через уроки литературного чтения с использованием игровых приемов обучения.
дипломная работа [963,0 K], добавлен 24.09.2017Психолого-лингвистическая характеристика чтения как вида иноязычной речевой деятельности. Задачи обучения чтению в школе. Этапы работы над домашним чтением в процессе обучения иностранному языку. Рекомендации по подготовке и проведению уроков чтения.
курсовая работа [4,1 M], добавлен 12.02.2015Принцип наглядности в трактовке зарубежных педагогов и психологов. Исследование использования средств наглядности на уроках обучения грамоте. Методические рекомендации по использованию средств наглядности на уроках обучения грамоте в начальной школе.
курсовая работа [1,7 M], добавлен 20.10.2011Изучение понятия числа в начальном курсе математики в школе. Гуманитарные подходы к изучению нумерации чисел. Методика изучения числа в пределах десяти. Исследование особенностей формирования понятия числа у младших школьников. Обзор опыта учителей.
дипломная работа [782,6 K], добавлен 16.06.2010Научно-теоретические, анатомо-физиологические и психологические основы процесса чтения, психологический анализ ошибок. Организация и методика исследования нарушений чтения у младших школьников. Методические рекомендации по совершенствованию чтения.
курсовая работа [48,5 K], добавлен 18.02.2011Понятие, теоретические основы и общая характеристика чтения как вида речевой деятельности. Изучение отечественных и зарубежных учебно-методических комплексов по английскому языку на предмет обучения технике чтения во втором классе начальной школы.
дипломная работа [2,8 M], добавлен 30.07.2017Формирование нравственности младших школьников на уроках литературного чтения в начальной школе. Изучение особенностей восприятия сказок младшими школьниками. Знакомство со сказками С.Я. Маршака как средство нравственного воспитания младших школьников.
дипломная работа [207,5 K], добавлен 25.12.2015Роль экологического образования. Место экскурсии в процессе экологического обучения в начальной школе. Виды, условия и технология организации экскурсий. Анализ уровня сформированности элементов экологической культуры у детей младшего школьного возраста.
дипломная работа [110,7 K], добавлен 25.12.2011Развитие комбинаторики и теории вероятностей. Основные комбинаторные понятия. Методика работы над заданиями с элементами теории вероятностей в начальной школе. Разработка внеклассного мероприятия "Решение задач комбинаторного и стохастического характера".
курсовая работа [273,0 K], добавлен 20.01.2013Дидактическое обоснование методов проблемного обучения. Проблемная ситуация – основное звено проблемного обучения. Методы и приемы организации проблемного обучения в начальной школе. Классификация проблемных ситуаций, пути и способы их создания.
дипломная работа [88,4 K], добавлен 11.05.2008