Алгоритм обобщения итерационно-интерполяционного метода (ИИМ) для решения трехмерного волнового уравнения. Постановка задачи и метод построения разностной схемы. Устойчивость схемы ИИМ по начальным данным. Сходимость и примеры применения метода.
Определение момента окончания переходного процесса при изменении параметров непрерывной динамической системы на основе применения метода Ляпунова, основанного на оценивании областей притяжения состояний равновесия. Проблема построения функции Ляпунова.
Модификация модели вычислений, представляющей собой незавершенный метод ветвей и границ. Разработка подхода к формированию метрик на множестве подзадач в различных задачах дискретной оптимизации. Закономерности реализации эвристических алгоритмов.
Анализ критерия согласия Колмогорова и омега-квадрата в случае простой гипотезы. Критерии согласия Пирсона и Фишера и их применение в математической статистике. Использование этой категории для распределения Пуассона. Случаи практического применения.
История развития, основные тенденции и роль интеграционных процессов в логистике. Моделирование перевозок c использованием кооперативной теории игр. Понятие двойственной игры. Анализ влияние конструктивной и блокирующей силы коалиций на принятие решений.
Изучение основных понятий логики предикатов. Определение формулы логики предикатов. Кванторы и кванторные операции. Анализ особенностей применения логики предикатов к логико-математической практике. Аристотелева силлогистика и методы рассуждений.
Исследование методов географических исследований. Применение математических вычислений в инженерных работах естественно-научного блока географии. Параметры эллипсоида вращения. Полярные координаты на эллипсоиде вращения. Виток геодезической линии.
Специфические особенности использования математических методов в процессах управления боевыми действиями войск. Андрей Николаевич Колмогоров - ученый, который применил теорию вероятности для решения проблемы повышения эффективности огня артиллерии.
- 3729. Применение математических методов в изучении религиозного состава населения Российской империи
Внедрение новых методик в историко-демографические исследования. Применение математических методов статистического подсчета данных и моделирования. Демографический анализ всеобщей переписи Российской империи 1897 г. и интерпретация его результатов.
Теоретические основы постановки и решения инженерных задач. Решение алгебраических и трансцендентных уравнений с одной переменной и систем алгебраических уравнений. Интерполяция, аппроксимация и численное интегрирование табличных и сложных функций.
Области применения математических методов в специализированных медицинских науках: в экологии, генетике, диагностике, теории эпидемий. Изучение основных метрических единиц и их обозначений. Пример решения и систематизации задач на концентрацию растворов.
Описание электрической цепи пассивного четырехполюсника по каналу "вход-выход". Запись уравнения электрической цепи в терминах пространства состояния и получение передаточной функции. Преобразование дифференциального уравнения цепи в дискретную форму.
Матрицы и действия над ними. Вычисление определителя и транспонирование матрицы. Технология выполнения операций в среде Excel. Вычисление обратной матрицы с помощью функции МОБР. Решение систем линейных уравнений методом Жордана-Гаусса. Свойства вектора.
Узловые и контурные уравнения установившихся режимов электрической сети, определение её параметров и нагрузок в узлах. Расчет матричными и итерационными методами. Узловые уравнения в форме баланса токов при их решении методом ускоренной итерации.
Нормирование значений признаков путем стандартизации переменных. Меры сходства: расстояние Евклидовое и Колмогорова. Понятие ядра и пути его вычисления. Матрица, описывающая обучающую выборку для эталонного класса. Векторы состояний исследуемых систем.
Особенности применения метода дополнительного аргумента для вычисления необходимых коэффициентов характеристической системы. Методика доказательства существования решения задачи Коши. Площадь криволинейной трапеции как физический смысл интеграла.
Результаты формирования теоретических основ использования модифицированных функций Лагранжа, развитых в численных методах оптимизации, для учета дополнительных голономных связей в механических системах. Параметры модифицированных функций Лагранжа.
Исследование первой краевой задачи для уравнения в частных производных второго порядка с отклоняющимся аргументом. Доказательство существования и единственности задачи. Применение метода Фурье для доказательства теоремы. Значение задачи Штурма-Лиувилля.
Дисперсионный анализ как раздел математической статистики, посвященный методам выявления влияния отдельных факторов на результат эксперимента. Методика его проведения. Изменение качественных факторов в процессе наблюдения за исследуемым объектом.
Права и свободы гражданина, закрепленные в Конституции Российской Федерации - способ защиты от коррупционных посягательств. Аппроксимация - метод, позволяющий функциональную зависимость, оформленную в виде таблицы, представить в аналитической форме.
Комплексное применение методов математической статистики в анализе экономических объектов. Формирование и изучение выборочной совокупности предприятия. Построение результативной аналитической группировки и анализ связи выручки с факторами производства.
Определение понятий модели и моделирования. Описание методики решения текстовых задач. Анализ применения моделирования при решении задач на движение. Разработка фрагментов уроков с использованием математической модели при решении задач на движение.
Рассматривается задача решения разреженных положительно определенных систем линейных алгебраических уравнений с медленно меняющимися коэффициентами. Приведены условия локальной и глобальной сходимости алгоритма. Обсуждаются его основные свойства.
Место задачи коммивояжера в теории комбинаторики с ее применением при разработке программного обеспечения. Постановка и математическая модель задачи коммивояжера. Особенности решения задачи коммивояжера методом ветвей и границ и венгерским методом.
Биологические принципы поведения муравьиной колонии, история создания соответствующих алгоритмов и особенности их использования. Этапы решения задачи при помощи муравьиных алгоритмов, оценка их достоинств и недостатков в решении задачи оптимизации.
Приводятся аналитические выражения для автоматического вычисления весовых коэффициентов важности. Рассматривается задача аппроксимации области эффективности в многокритериальных задачах оптимизации при использовании логического критерия оптимальности.
Основатели символического (операционного) исчисления. Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Дифференцирование изображения. Интегрирование оригинала и изображения. Отыскание оригинала по изображению.
Вычисление площади плоских фигур при помощи интегралов. Нахождение объема тела, длины дуги, площади поверхности вращения. Определение статических моментов, центра тяжести плоских фигур, координат центра тяжести кривых с помощью определенного интеграла.
Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.
Кинематические и динамические обратные задачи сейсморазведки. Вероятность схождения градиентных методов к глобальному экстремуму. Применение аппроксимации в методе дифференциальной эволюции. Использование параллельных вычислений в методах оптимизации.