Широкое проникновение математики и ее методов в другие отрасли знания. Роль математики в медицине, кардиологии, фармацевтике и педиатрии. Применение математических методов в биофизике, биохимии, генетике, физиологии и медицинском приборостроении.
Математика как часть человеческой культуры, ключ к познанию окружающего мира, база научно-технического прогресса. Этапы развития математики. Ее роль в науке, интеллектуальном развитии личности, познании мира. Особенности математического стиля мышления.
Основные принципы построения и преподавания науки. Математические модели, отражающие объективные свойства и связи. Формирование понятия геометрической фигуры и числа как идеализации реальных объектов. Роль математики в интеллектуальном развитии личности.
Формирование понятия геометрических фигур и числа в качестве инструмента идеализации реальных объектов - один из важнейших этапов развития математических знаний. Универсальность как отличительная особенность процесса математизации научных знаний.
Рассматривается прикладная роль математики для основных специальностей, по которым ведет подготовку вуз. Исследуется история развития математики с древности до наших дней. Поднимаются частые проблемы математического образования в современном обществе.
Особенности решения задач по расчету процентных денег методом простых и сложных процентов. Линейное уравнение как простейший пример диофантова уравнения. Использование алгебраических уравнений и их систем, решение задач методом линейного программирования.
Перекрестный и сравнительный анализ влияния математической логики в информатике. Роль предикатной логики в формулировке и проверке условий, в программировании и в решении различных задач в информатике. Связь математической логики с теорией вычислений.
Наглядность в обучении и воспитании младших школьников. Классификация наглядных пособий по математике. Развитие пространственного мышления школьников. Наглядная геометрия, ее роль и место, история возникновения. Развитие мыслительных операций учащихся.
Алгебра как часть вычислительного анализа и теории функций. Теория конечных групп подстановок. Представители Русской алгебраической школы. Научные исследований по математике Отто Шмидта, гипотеза о происхождении Земли. Труды по теории множеств Новикова.
- 3670. Ряд Маклорена
Нахождение производных функции, коэффициента ряда. Подставление коэффициентов в разложении функции в ряд. Частичная сумма ряда, остаток ряда. Область сходимости ряда. Ряд Маклорена как частный случай ряда Тейлора. Остаточный член формулы Тейлора.
- 3671. Ряд Тейлора
Ознакомление с историей открытия ряда Тейлора, который применяется при аппроксимации функции многочленами. Рассмотрение формулы Тейлора. Исследование рядов Маклорена некоторых функций. Характеристика натурального логарифма и биноминального разложения.
Способы вычисления членов ряда Фибоначчи Sn, начиная с S6. Критерии затраты времени на нахождение ответа, количества операций над многозначными числами и объема вычислений. Выполнение операций над многозначными числами. Проведение поразрядных операций.
- 3673. Ряди динаміки
Складові елементи ряду динаміки. Формування динамічних рядів для дослідження розвитку суспільних явищ. Характеристика сезонних коливань, методи їх вимірювання. Абсолютне значення одного відсотка приросту. Згладжування за допомогою рухомої середньої.
Исследование на сходимость числового ряда. Разложение в окрестности определенной точки в степенной ряд функции. Решение задачи Коши для уравнения. Определение радиуса и интервала сходимости степенного ряда и общего решения дифференциального уравнения.
- 3675. Ряды Фурье
Понятие ряда Фурье. Определение коэффициентов, признаки сходимости рядов. Разложение в ряд Фурье периодической, непериодической и тригонометрической функций. Пространство функций со скалярным произведением. Основные типы уравнений математической физики.
- 3676. Ряды Фурье
Решение граничных задач. Определение числового ряда. Основные свойства числовых рядов. Признаки сходимости Лейбница. Ряды с положительными членами. Знакочередующиеся и знакопеременные ряды. Числовые и функциональные ряды. Ряды и интеграл Фурье.
- 3677. Ряды Фурье
Французский математик Фурье и его основные труды. Понятие и основные сведения о ряде Фурье. Достаточные признаки разложимости функции в ряд Фурье. Ряды Фурье для четных и нечетных функций. Ортогональная система функций, задача о колебании струны.
Тригонометрический ряд Фурье и его основные свойства. Сущность теоремы Римана–Лебега. Сдвиг и растяжение основного промежутка. Гармонический анализ непериодических функций. Метод средних арифметических и метод Чезаро. Ряд теорем Карла Вейерштрасса.
Гармонические колебания (гармоники) и их характеристика. Основная система тригонометрических функций. Тригонометрический ряд Фурье, его особенности для четных и нечетных функций, достаточные условия сходимости. Ряд Фурье в комплексной форме, его интеграл.
Алгоритми для розв'язання проблеми рівності в групах та напівгрупах (асинхронних) автоматних перетворень. Доведення ізоморфізма груп асинхронно автоматних перетворень над різними алфавітами. Розв'язання проблеми Григорчука про класифікацію груп Gw.
Анализ способа вычисления двойных интегралов путем сведения их к повторному интегралу. Ограничение функции сверху и снизу двумя непрерывными кривыми в области d. Алгоритм исчисления двойного интеграла в прямоугольных координатах и замена его переменных.
Определение дискретного эквивалента аналогового фильтра. Отражение циклической свертки через матрицы Ганкеля и Теплица. Модель винеровской фильтрации. Спектральный анализ стационарных гармонических сигналов. Статистические методы спектрального анализа.
- 3683. Свойства (0,1)-матриц
Рассмотрение особенностей паросочетания в двудольных графах. Обзор примеров решения задач дискретного программирования методами линейного программирования. Исследование теоремы Кёнига и Фробениуса-Кёнига. Вычисление граничного ранга и ранга покрытия.
Применение бинома Ньютона при доказательстве теоремы Ферма, в теории бесконечных рядов и выводе задачи Ньютона-Лейбница. Использование биномиальных коэффициентов при решении заданий. Суть формул сжатого умножения для квадрата и куба суммы двух слагаемых.
Основные свойства выборочной дисперсии. Распределение значения со степенями свободы, приближенное выражение квантилей. Формула, применяемая для вычисления квантилей малого порядка. Плотность распределения Стьюдента. Матожидание распределения Фишера.
Основные понятия теории графов. Свойства маршрутов, цепей, циклов. Понятие гамильтонова графа. Доказательство теоремы Дирака. Постановка задачи о коммивояжере и описание известных способов ее решения. Практические приложения задачи. Метод ветвей и границ.
- 3687. Свойства гиперболы
Понятие гиперболы как геометрического места точек разности расстояний. Процесс построения канонического уравнения. Характеристика главных свойств гиперболы. Понятие параболы как геометрического места точек плоскости равноудаленных от фиксированной точки.
Понятие двойного интеграла, условия его существования, свойства и методы вычисления. Теорема о среднем. Вычисления объемов тел, ограниченных поверхностями, с применением геометрического смысла двойного интеграла. Интегрирование функции в области d.
- 3689. Свойства дифференциала
Обзор основных понятий о дифференциале функции и его применении в приближенных вычислениях. Определение дифференциала алгебраической суммы конечного числа дифференцируемых функций. Инвариантность формы дифференциала. Вынос постоянного множителя за знак.
Описание построения и расчет формул основных математических кривых: декартов лист, лемниската Бернулли, логарифмическая спираль, спираль Архимеда, циклоида, эпициклоида, гипоциклоида, дельтоида, астроида, овал Кассини, строфоида, трактриса, кардиоида.