• Ознакомление с примерами решений дифференциальных уравнений. Характеристика особенностей применения преобразований Лапласа. Исследование процесса записи решений дифференциальных уравнений при помощи свертки. Рассмотрение формулы Грина и Дюамеля.

    презентация (1,8 M)
  • Определение процента учащихся, владеющих математикой. Развитие познавательной активности учащихся. Теория пределов и дифференциальных исчислений. Таблица производных основных элементарных функций. Методы решения неравенств. Понятие критической точки.

    презентация (1,0 M)
  • Производная функции как одно из фундаментальных понятий математики. Применение производной при решении физических, химических и биологических задач. Особенности решения с помощью производной функции задач с географическим и экономическим содержанием.

    творческая работа (301,0 K)
  • Экономический смысл производной и сущность дифференциального исчисления. Применение производной при решении задач по экономической теории. Использование производной в предельном анализе, описание экономических законов с помощью математических формул.

    презентация (2,0 M)
  • Превентивные программы, направленные на модификацию поведения людей как метод профилактики распространения эпидемии вируса иммунодефицита человека. Математическая модель оценки риска заражения ВИЧ в результате рискованного сексуального поведения.

    статья (89,6 K)
  • Сущность истории создания теории графов. Исследование задачи о Кенигсбергских мостах. Особенность изучения хроматических многочленов. Результаты работы жадного алгоритма при выборе разных порядков вершин. Анализ параллельных и распределенных систем.

    реферат (296,5 K)
  • Рассмотрение достаточных условий разложимости функции в ряд Тейлора. Изучение и анализ процесса применения рядов в приближенных вычислениях. Определение разложения некоторых элементарных функций в ряд Маклорена. Исследование применения степенных рядов.

    контрольная работа (49,3 K)
  • Рассмотрение особенностей байесовского подхода. Формула и применение теоремы Байеса. Байесовская стратегия оценки достоверности выводов в экспертных системах. Расчет вероятности обнаружения профессионального заболевания при фактических рабочих условиях.

    реферат (59,9 K)
  • Понятие математической модели, ее свойства и классификация. Обзор систем и основные принципы компьютерного моделирования. Расчет значений функций токов в указанной схеме с использованием системы MathCAD и построение их сводного графика на одном поле.

    курсовая работа (202,8 K)
  • Алгебраическая иммунность как основное свойство булевых функций, характеризующих способность шифра противостоять алгебраическим атакам. Использование системы компьютерной алгебры Sage для автоматизации процессов нахождения числовых характеристик функции.

    статья (55,4 K)
  • Значение теоремы Дж. Чевы и Менелая в золотом фонде древнегреческой математики. Сравнительный анализ в эффективности применение этих теорем по сравнению с другими способами решения планиметрических задач. Доказательство теоремы о биссектрисе угла.

    контрольная работа (1,4 M)
  • Решение задач с параметрами – одна из сложных тем курса алгебры средней школы. Настоящая статья посвящена исследованию квадратных уравнений и сводящихся к ним систем уравнений, содержащих параметр, на некоторой области допустимых значений переменной.

    статья (514,6 K)
  • Пифагор как великий древнегреческий ученый, математик и философ, анализ биографии. Особенности применения теоремы Пифагора в строительстве. Рассмотрение основных способов вычисления стороны прямоугольных треугольников по двум известным сторонам.

    презентация (206,3 K)
  • Теория вероятности как наука, которая изучает закономерности массовых случайных явлений. Знакомство с особенностями применения теории вероятности и математической статистики в экономике. Общая характеристика выборочного метода статистических исследований.

    статья (14,4 K)
  • Определение вероятности, следствие из принципа практической невозможности маловероятных событий. Теорема Муавра–Лапласа. Закон распределения случайной величины. Дискретная случайная величина. Математическое ожидание дискретной случайной величины.

    контрольная работа (272,0 K)
  • Изучение основных понятий комбинаторики и вероятности. Анализ истории комбинаторики, характеристика ее основных понятий и формул. Анализ сущности понятия вероятность. Характеристика особенностей применение формул комбинаторики к подсчету вероятности.

    курсовая работа (201,0 K)
  • Определение факторов риска в финансовой и экономической сферах по правилу Т. Байеса, построение модели инфляции цен. Использование родословной для расчета вероятностей в генетическом прогнозировании и тестировании. Байесовский анализ риска заболевания.

    реферат (25,4 K)
  • Знакомство с понятием, историей возникновения и исследованиями Бенуа Мандельброта. Представление о фракталах, встречающихся в нашей жизни. Нахождение подтверждения теории фрактальности окружающего мира. Фракталы в математике, геометрии и в реальном мире.

    практическая работа (427,2 K)
  • Виды интегралов и их вычисление, их применение к решению прикладных задач. Нахождение площадей, ограниченных различными кривыми, и объемов, ограниченных различными поверхностями с помощью интегралов. Применение криволинейных и поверхностных интегралов.

    реферат (3,2 M)
  • Примеры конечных и бесконечных множеств с помощью перечисления или описания. Прямые произведения множеств, сочетаний, размещений, перестановок. Способы представления бинарных отношений. Анализ рефлексивных, симметричных, транзитивных бинарных отношений.

    шпаргалка (4,6 M)
  • Математические уравнения как основное средство познания при моделировании физических явлений и строения окружающего мира, их классификация и типы. Понятие диофантового анализа уравнений и принципы его реализации, варианты решения при использовании.

    реферат (13,7 K)
  • Определение закона распределения случайной величины по статистическим данным. Характеристика первичного ряда наблюдения. Полигон частот, функция плотности стандартного нормального распределения. Оценка числовых характеристик и неизвестных параметров.

    методичка (333,8 K)
  • Система массового обслуживания как техническое устройство, состоящее из двух узлов, которые могут независимо друг от друга выходить из строя. Знакомство с примерами решения задач по системам массового обслуживания. Способы решения линейных уравнений.

    контрольная работа (1,9 M)
  • Простейшие геометрические характеристики векторных полей: векторные линии, поток, дивергенция, циркуляция и вихрь. Частный случай электромагнитного поля. Гравитационное и тензорное поля. Примеры скалярных полей на трёхмерном и плоском пространстве.

    эссе (15,6 K)
  • Выражение функциональных зависимостей в виде уравнений, объединяющих данные величины или явления. Графическая иллюстрация золотого правила механики. Графическое изображение современного информационного бума. Примеры математических портретов пословиц.

    реферат (1,0 M)
  • Методологические основы и задачи многокритериального выбора. Построение формальной модели с использованием информационно-потребностной теории эмоций. Анализ матрицы парных сравнений для выявления лидирующего по полезности варианта решения проблемы.

    статья (161,8 K)
  • Рассмотрение сущности принципа Лагранжа. Описание его применения для решения экстремальных задач без ограничений, конечномерных задач с ограничениями типа равенств, задач с ограничениями типа неравенств и равенств, задач выпуклого программирования.

    лекция (63,4 K)
  • Анализ практических задач оптимизации объектов управления. Определение понятия игольчатой вариации. Примеры основных уравнений и их применения для синтеза оптимальных систем. Характеристика сущности принципа максимума. Пример решения уравнения состояния.

    доклад (32,4 K)
  • Общая задача управления. Функция Гамильтона. Дифференциальные уравнения для фазовых координат. Интерпретация сопряженных переменных. Чувствительность оптимального значения целевого функционала к изменению начального момента времени и фазового состояния.

    презентация (170,1 K)
  • Принцип максимума Понтрягина как эффективное средство исследования задач оптимального управления. Примеры применения принципа максимума. Построение функции Гамильтона по двум дифференциальным уравнениям первого порядка. Задачи оптимального управления.

    контрольная работа (92,4 K)