Анализ самоорганизация регрессионных моделей или метода группового учета аргументов, который относится к детерминированным методам. Рассмотрение математической постановки задачи классификации. Ознакомление с процессом решения задачи классификации.
Методы математического моделирования и современные информационные технологии в сфере мониторинга пожарной обстановки. Управление тушением лесного пожара с использованием метода обратных задач динамики. Синтез алгоритмов управления в виде обратных связей.
Анализ рядов, составленных по ежедневным замерам уровня воды в горной реке Мзымта. Построение моделей, адекватно описывающих динамику рядов. Расчет точечных и интервальных прогнозов на семь дней. Оценка точности построенных моделей, сравнение значений.
Необходимость минимизации времени на принятие решений при заданных вероятностях ошибок первого и второго рода. Алгоритмы последовательного обнаружения траектории цели c использованием решающих статистик отметок при известном отношении сигнал/шум.
Функции и разнообразие форм квадратного трехчлена и использование его свойств. Геометрическая интерпретация задач, связанных с квадратным трехчленом. Расположение корней трехчлена со знаками его значений. Теорема Виета и следствие о знаках корней.
- 126. Аксиома выбора
Аксиома выбора как один из важнейших теоретико-множественных принципов. Главная причина отрицательного отношения к принятию аксиомы. Альтернативные формулировки термина. Принцип вполне упорядочивания (теорема Цермело). Общее понятие о максимуме Хаусдорфа.
Геометрия Лобачевского (гиперболическая геометрия) как одна из неевклидовых геометрий. Евклидова аксиома о параллелях. Разработка модели планиметрии. Параллельные прямые, треугольники и четырехугольники на плоскости и пространстве по Лобачевскому.
Исторические вехи становления аксиоматического метода и его роль в развитии математического образования. Интерес к методам научного познания, к природе математических понятий и аксиом и логике доказательства. Дискуссии о дискурсивном и интуитивном знании.
Общая схема использования аксиоматического подхода при сопоставлении и выборе методов обработки данных. Задача вычисления удельного веса индексных факторов в мультипликативных индексных моделях. Характеристика основных методов вычисления вклада факторов.
- 130. Аксиомы планиметрии
Характеристика раздела геометрии, в котором изучаются изображения на поверхности. Точка и прямая как основные геометрические фигуры на плоскости. Проведение исследования аксиом принадлежности, расположения, измерения, откладывания и параллельности.
Рассмотрение видов аксонометрии и расположения оси прямоугольной изометрии. Определение натуральных и приведенных показателей искажения и масштаба изображения в прямоугольной изометрии. Приведение примеров выполнения фронтальной косоугольной диметрии.
Сущность метода параллельного аксонометрического проецирования. Основная теорема аксонометрии (теорема Польке). Применение прямоугольных изометрии и диметрии. Построение аксонометрических изображений. Параллельное проецирование окружности на плоскость.
Сущность построения аксонометрических проекций. Прямоугольная, косоугольная аксонометрия. Общие сведения о многогранниках. Построение проекций многогранника, развертка. Сведения о кривых поверхностях. Построения проекций кривых поверхностей и развертки.
Викладення системи математичних задач фінансового змісту як засобу активізації пізнавальної діяльності учнів основної школи. Огляд прийомів формування фінансової грамотності учнів під час навчання математиці. Методичні рекомендації з розв’язування задач.
История Божественной гармонии. Первое упоминание деления отрезка в крайнем и среднем отношении. Применение закона гармонического деления в математике. Способ построения пентаграммы. Использование закономерности и связи золотого сечения и числа Фибоначчи.
Формирование у учащихся интереса к математике и применение разнообразных видов работ по предмету. Основы преподавания геометрии в условиях профильной дифференциации обучения. Технологии дидактики в процессе управления методической работой в школе.
Изучение фундаментальных проблем и взаимосвязей в следующих направлениях современной алгебры: теория неассоциативных алгебр, теория конечных групп и алгебраическая геометрия. Исследования квантований алгебр, в конечных лиевых и нелиевых группах.
Анализ фундаментальных проблем в направлениях современной алгебры: теория неассоциативных алгебр, теория конечных групп и алгебраическая геометрия. Построение примеров йордановых супералгебр над произвольным полем. Арифметическое описание спектров.
Строение абелевых групп симметрий хиггсовского потенциала в вакууме для N-дублетной хиггсовской модели. Типы центральных простых конечномерных некоммутативных йордановых супералгебр. Конструкция кольца частных для обобщенной алгебры Новикова-Пуассона.
Основні напрямки сучасної теорії зображень. Роль теорії матричних задач А.В. Ройтера. Обчислення матричної алгебри Aуслендера для однієї задачі про подібність пари матриць з деякими природними співвідношеннями. Формулювання класифікаційної теореми.
Особенности алгебры над множеством логических функций и переменных, сигнатура которой содержит две бинарные операции. Характеристика полиномома Жегалкина. Основные аспекты его поиска. Анализ основ использования метода неопределенных коэффициентов.
- 142. Алгебра и геометрия
Операции над множествами и их свойства. Система комплексных чисел. Многочлены с действительными коэффициентами и алгоритм Эвклида. Решение систем линейных уравнений матричным способом. Свойства аффинной и прямоугольной декартовой системы координат.
Поняття числової функції. Властивості і графіки основних видів функцій. Тригонометричні функції кута і числового аргументу. Формули додавання та їх наслідки. Метод математичної індукції. Знаходження раціональних коренів многочлена з цілими коефіцієнтами.
Геометрическая интерпретация комплексных чисел и действий над ними. Формулы длины отрезка и скалярного произведения векторов. Параллельность, коллинеарность, перпендикулярность. Двойное отношение четырёх точек плоскости. Полюсы относительно окружности.
- 145. Алгебра логики
Сущность логики как науки о формах и способах мышления. Характеристика основных видов мышления: понятие, высказывание, умозаключение. Описание базовых логических операций: инверсия, дизъюнкция, конъюнкция. Порядок применения закона Моргана, его цель.
- 146. Алгебра логики
Краткая справка возникновения логики как науки, методика и предмет ее исследования. Особые математические функции от логических аргументов. Преобразование выражений, состоящих из булевых функций, применение в вычислительной технике и информатике.
- 147. Алгебра логики
Понятия алгебры логики: конъюнкция, дизъюнкция, инверсия, импликация, эквивалентность. Двоичные операции с цифровыми сигналами. Классификация электронных транзисторных физических реализаций логических элементов. Комбинационные логические устройства.
Введение понятия бинарного события. Рассмотрение событий, задаваемых булевыми функциями. Доказывание теоремы о вероятности события. Получение расчетных формул для условных вероятностей и формул Байеса, построение задач на применение полученных формул.
- 149. Алгебра логіки
Основні поняття алгебри логіки та її закони. Алгоритм побудови таблиць істинності для складних виразів. Схеми базових логічних елементів. Операції заперечення, диз'юнкції і кон'юнкції для обробки висловлювань. Правила перетворення логічних виразів.
- 150. Алгебра матриц
Исследование особенностей обозначения числовых матриц. Линейные операции над ними. Характеристика основ коммутативного закона умножения. Аспекты проверки свойства ассоциативности. Рассмотрение основных функций вырожденных и невырожденных матриц.