Розробка (на основі методу Вішика-Люстерника) алгоритмів побудови асимптотичних розв’язків крайових задач Діріхле та Неймана, їх обґрунтування. Доведення теореми про порядок. Рішення диференціальних рівнянь параболічного типу при умовах імпульсної дії.
Алгоритми побудови асимптотичних рішень нелінійних диференціальних рівнянь теплопровідності зі змінними коефіцієнтами, імпульсною дією, крайовими умовами Діріхле та Неймана. Розробка теорем про оцінку різниці між точним та наближеним розв’язками.
Вертикальные, наклонные и горизонтальные асимптоты графика функции. Использование правила Лопиталя для раскрытия неопределённости. Вычисление правостороннего предела. Решение квадратного уравнения. Исследование графика функции на наличие асимптот.
Залежність між тотожностями частинної асоціативності і врівноважені тотожності, які з них випливають. Описання поліагруп, в яких операція взяття косого елемента є сталою, має скінченний порядок. Дослідження властивостей понять схрещеної ізотопії.
Поняття асоціативного групоїда багатомісних операцій. Аналіз оноїдів з оборотними елементами. Метод описання класів алгебр розкладів поліагруп. Розклади багатомісних операцій. Класифікації функційних рівнянь з точністю до парастрофної рівносильності.
Исследование особенностей распространения нефтепродуктов при возможных утечках в воды Мирового океана. Приводится математическая модель, описывающая распространение многофазной затопленной струи, в результате повреждения нефтедобывающей конструкции.
Сравнительный анализ распространенных экспертных методов измерения алгоритмов определения весовых коэффициентов: ранжирования, одинарного и двойного попарного сопоставления. Анализ их сложности и условия применения. Используемые показатели качества.
Геометрические и аффинные преобразования на плоскости. Применение однородных координат для матричной формы записи уравнений аффинных преобразований. Свойства и способы задания аффинного преобразования плоскости, которые переводят прямую в прямую.
Определение аффинных преобразований пространства, их основные свойства. Основные доказательства теорем про аффинные преобразования. Характеристика родства пространства: его определение, свойства (корректность определения направления родства и пр.).
Идея бесконечности, без которой невозможна математика, вводится в систему Principia Mathematica посредством аксиомы бесконечности. Трактовка аксиомы Расселом (английским математиком и философом) бесконечности как содержательного высказывания о мире.
Специфіка багатомісних асоціатів, напівгруп та їх узагальнень. Властивості схрещеної ізотопії та схрещеного ізоморфізму поліагруп. Аналіз умов, при яких схрещений ізотоп квазігрупи є квазігрупою, схрещений ізоморф поліагрупи є комутативним і медіальним.
Базис в трёхмерном пространстве как любая упорядоченная тройка линейно независимых векторов. Методика определения коэффициентов разложения векторов на плоскости. Анализ условий, при выполнении которых ортогональный базис называется ортонормированным.
Линейные (векторные) пространства. Пространства числовых последовательностей. Топологические векторные пространства, обладающие базисным свойством. Существование базиса в топологическом векторном пространстве. Единственность базиса, метод декомпозиции.
Переменные и функции алгебры логики, обзор ее основных теорем о положений. Реализация импульсно-потенциальных логических элементов Троичные коды и система счисления. Логические элементы дискретной автоматики. Принцип двойственности (правило де Моргана).
Вероятностный эксперимент, событие. Случайная величина и её числовые характеристики и законы распределений. Распределение Стьюдента, Фишера. Применение таблиц стандартизированного нормального распределения. Значения ряда экономических показателей.
Теорема Байеса как логическая основа пересмотра суждений в зависимости от действительно происходящих событий. Возможности байесовского подхода для анализа как средства построения скоринговой системы. Нахождение оценок любых рисков. Точность прогноза.
Исследование обобщенного анализа адаптивного безынерционного алгоритма, асимптотически устойчивых и относительно крупных неучтенных возмущений. Описание синтеза основанного на методе функций Ляпунова. Расчет элементов матрицы настраиваемых параметров.
Анализ фрагмента аргументации возможности однозначного сведения математических понятий к теоретико-множественным понятиям. Замечания П. Бенацеррафа к своей аргументации против теоретико-множественного реализма, отвержение проблемы отождествления.
Исследование условия, при котором функция является бесконечно большой величиной для любого числа. Изучение свойств ББВ. Произведение ББВ на функцию, предел которой отличен от нуля. Колебание значений при переходе от положительных к отрицательным.
- 320. Бесконечно малые и бесконечно большие величины. Теоремы о пределах. Раскрытие неопределенностей
Формульное выражение и свойства бесконечно малых функций, распространяемых на случаи алгебраической суммы конечного числа. Методы вычисления бесконечно больших величин. Изучение теоремы о пределах. Способы подстановки предельного значения аргумента.
Обозначение множества и его графическое изображение. Операции пересечения, объединения, дополнения и прямого произведения множеств. Их равенство – источник недоразумений. Исследование социального положения жителей села с помощью математической теории.
Основные понятия бесконечных произведений, их свойства. Критерий Коши сходимости бесконечных произведений. Бесконечные произведения с действительными сомножителями. Связь между сходимостью бесконечных произведений и рядов. Применение дзета-функции Римана.
Определение гамма-функцией и бета-функцией эйлеровых интегралов первого и второго рода. Основное функциональное уравнение гамма-функции. Связь межу бета и гамма-функциями Эйлера. Построение графика модуля гамма-функции на комплексной плоскости.
Предложены методы полиномиальной, кусочно-линейной интерполяции и интерполяции с ограничителем для полиномов с первой по пятую степень включительно. Написана библиотека, реализующая все перечисленные методы, и проведено ее численное тестирование.
Понятие индивидуальных предпочтений и удовлетворяющих ряд свойств, описываемых бинарными отношениями. Очерк развития ординального подхода в рамках математической логики. Анализ специальных классов линейного порядка. Свойства матриц смежности графов.
Основные понятия и теоретические сведения о вероятностно-статистических моделях. Схема постановки задач и принципов их решения в теории проверки статистических гипотез. Исследование вероятностных и статистических свойств биномиального распределения.
Математический анализ случайных событий и связанных с ними случайных величин. Характеристика и распределение случайных величин. Функция распределения и плотность распределения. Основные свойства, аппроксимация и применение биномиального распределения.
Понятие о биномиальном распределении в лесном хозяйстве. Биномиальное распределение как проявление событий с двумя исходами. Распределение Пуассона как частный случай биномиального. Вычисление выравнивающих частот для данных способов распределения.
Жизнь и профессиональная деятельность выдающегося математика Андрея Николаевича Колмогорова. Анализ теорем и аксиом элементарной теории вероятностей, понятие непрерывности и бесконечности пространства. Решение линейных уравнений в конечных разностях.
Изучение биографии знаменитого французского математика и физика - Ж.Б. Фурье. Теорема о числе действительных корней алгебраического уравнения. Теория распространения тепла в твердом теле. Анализ интеграла, коэффициентов, преобразования и метода Фурье.