Радиотехника и электроника
Учение о строении атомов и молекул. Сведения о полиморфных превращениях углерода, о наноуглеродных трубках и способах их получения. Свойства растворов неэлектролитов и электролитов. Физико-химические свойства металлов, полупроводников и диэлектриков.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 19.08.2017 |
Размер файла | 2,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Молекула CO и ионы CN-, NO+ изоэлектронны молекуле N2 (содержит по 10 валентных электронов), что соответствует следующей электронной конфигурации в невозбужденном состоянии:
(уsсв.)2 (уsразр.)2 (русв.)2 (рzсв.)2 (ухсв.)2
Энергетическая диаграмма уровней молекулы BeH2 имеет вид: Четыре валентных электрона невозбужденной молекулы BeH2 располагаются на у и у - орбиталях, что описывается формулой (у ) 2 (у ) 2.
3.8 Ионная связь
Химическая связь, возникающая за счет перехода электронов от атома к атому, называется ионной, или электровалентной. Электровалентность определяется числом электронов, теряемых или приобретаемых каждым атомам. Причиной возникновения ионной связи является большая разность ЭО взаимодействующих атомов 2,0 и более. Принципиального различия в механизме возникновения ковалентной и ионной связей нет. Эти виды связи отличаются лишь степенью поляризации электронного облака связи, а, следовательно, длинами диполей и величинами дипольных моментов. Чем меньше разность электроотрицательностей атомов, тем более проявляется ковалентная связь и менее - ионная. Даже в таком ''идеальном» ионном соединении, как фторид франция, ионная связь составляет около 93- 94 %.
Если рассмотреть соединения элементов какого - либо периода с одним и тем же элементом, то по мере передвижения от начала к концу периода преимущественно ионный характер связи меняется на ковалентный. Например, у фторидов элементов 2 - ого периода в ряду LiF, BeF2, BF3, CF4, NF3, OF2, F2 ионная связь характерная для фторида лития, постепенно ослабевает и переходит в типично ковалентную связь в молекуле фтора.
Для однотипных молекул, например HF, HCl, HBr, HS (или H2O, H2S, H2Se), дипольный момент тем больше, чем больше ЭО элементов (ЭОF > ЭОCl; ЭОО > ЭOS, Se).
Образующиеся ионы можно представить в виде заряженных шаров, силовые поля которых равномерно распределяются во всех направлениях пространства (рис. 30). Каждый ион может притягивать к себе ионы противоположного знака по любому направлению. Иначе говоря, ионная связь в отличие от ковалентной характеризуется ненаправленностью.
Рис. 30. Распределение электрических силовых полей двух разноименных ионов
В отличие от ковалентной связи ионная связь характеризуется еще и ненасыщенностью. Объясняется это тем, что образующиеся ионы способны притягивать большое количество ионов противоположного знака. Число притягивающихся ионов определяется относительными размерами взаимодействующих ионов. Вследствие ненаправленности и ненасыщаемости ионной связи, энергетически наиболее выгодно, когда каждый ион окружен максимальным числом ионов противоположного знака. Таким образом, для ионных соединений понятие простых двухионных молекул типа NaCl, CsCl теряет смысл. Ионные соединения в обычных условиях представляют собой кристаллические вещества. Весь кристалл можно рассматривать как гигантскую молекулу, состоящую из ионов Na, Cl и Cs Cl
Лишь в газообразном состоянии ионные соединения существуют в виде неассоциированных молекул типа NaCl и CsCl.
Ионная связь, как было показано выше, не является чисто ионной даже в типичных молекулах (CsF, F2F). Неполное разделение зарядов в ионных соединениях объясняется взаимной поляризацией ионов, т.е. влиянием их друг на друга. Поляризуемость - способность к деформации электронных оболочек в электрическом поле.
Это приводит к деформации электронных оболочек ионов. Наибольшее смещение испытывают при поляризации электроны внешнего слоя, поэтому в первом приближении можно считать, что деформации подвергается только внешняя электронная оболочка. Поляризуемость различных ионов неодинакова
Увеличение R иона, увеличение поляризуемости.
Точно также поляризуемость галогенов изменяется в следующей последовательности:
Увеличение R иона, увеличение поляризуемости.
Чем меньше заряд иона, тем меньше его поляризуемость. Поляризующая способность ионов, т.е. их способность оказывать деформирующее воздействие на другие ионы зависит от заряда и размера ионов. Чем больше заряд иона и меньше его радиус, тем сильнее создаваемое им электрическое поле, следовательно, тем больше его поляризующая способность. Таким образом, анионы характеризуются (в сравнении с катионами) сильной поляризуемостью и слабой поляризующей способностью.
Рис. 31. Смещение электронного облака аниона в результате поляризации
Под действием электрических полей каждого иона внешняя электронная оболочка смещается в сторону противоположно заряженного иона. Действие электрических полей смещает и ядра атомов в противоположных направлениях. Под действием электрического поля катиона внешнее электронное облако аниона смещается. Происходит как бы обратный перенос части электронного заряда от аниона к катиону (рис. 31).
Таким образом, в результате поляризации электронные облака катиона и аниона оказываются не полностью разделенными и частично перекрываются, связь из чисто ионной превращается в сильнополярную ковалентную. Следовательно, ионная связь - предельный случай полярной ковалентной связи. Поляризация ионов оказывает заметное влияние на свойства образуемых ими соединений. Поскольку с усилением поляризации возрастает степень ковалентности связи, то это сказывается на диссоциации солей в водных растворах. Так, хлорид BaCl2 принадлежит к сильным электролитам и в водных растворах практически полностью распадается на ионы, тогда как хлорид ртути HgCl2 почти не диссоциирует на ионы. Это объясняется сильным поляризующим действием иона Hg2+ радиус которого (1,1 Ає) заметно меньше радиуса иона Ba2+ (1,34 Ає)
Особенно высоким поляризующим действием обладает ион водорода, который может сближаться с анионом до близкого расстояния, внедряясь в его электронную оболочку и вызывая сильную ее деформацию. Так, радиус Cl- равен 1,81 Ає , а расстояние между ядрами атомов хлора и водорода в HCl - 1,27 Ає.
3.9 Водородная связь
Общие понятия. Водородная связь - разновидность донорно - акцепторной связи, осуществляющаяся между молекулами различных веществ, в состав которых входит водород. Если молекулу такого вещества обозначить НХ, то взаимодействие за счет водородной связи можно выразить так
Н - Х….. Н - Х….. Н - Х
В качестве х можно взять атомы F, O, N, Cl, S и др. Точечным пунктиром обозначена водородная связь.
В молекулах НХ атом H ковалентно соединен с электроотрицательным элементом, общая электронная пара значительно смещена к электроотрицательному элементу. Водородный атом оказывается протонированным (H+) и он имеет свободную орбиталь.
Анион электроотрицательного элемента другой молекулы НХ имеет неподеленную пару электронов, за счет которых происходит взаимодействие. Если водородная связь образуется между разными молекулами, то она называется межмолекулярной, если связь образуется между двумя группами одной и той же молекулы, то она называется внутримолекулярной. Образование водородной связи наблюдается в растворах НF, H2O (жидк.), NH3 (жидк.), спиртах, органических кислотах и др.
Энергия и длина водородной связи. Водородная связь отличается от ковалентной меньшей прочностью. Энергия водородной связи невелика и достигает 20 - 42 кДж/моль. Она зависит от электроотрицательности (ЭО) и размеров атомов Х: энергия возрастает с увеличением ЭО и уменьшением их размеров. Длина ковалентной связи заметно меньше длины водородной связи (l св.H), например, l св. (F - H) = 0, 092 нм, а lсв.H (F … H) = 0, 14 нм. У воды lсв. (O - H) = 0, 096 нм, а lсв.H (O … H) = 0, 177 нм.
Влияние водородных связей на свойства веществ. При возникновении водородных связей образуются димеры, тримеры или полимерные структуры, например зигзагообразные структуры (HF)n, кольцевые структуры некоторых органических кислот, например уксусной кислоты или более сложные конфигурации, например у льда, у которого молекулы воды образуют по четыре водородные связи
Соответственно в жидком состоянии молекулы, вступающие в водородные связи, ассоциированы, а в твердом состоянии образуют сложные кристаллические структуры. При образовании водородных связей существенно изменяются свойства веществ: повышаются температура кипения и плавления, вязкость, теплоты плавления и парообразования. например, вода, фтороводород и аммиак имеют аномально высокие температуры кипения и плавления. Вещества в парообразном состоянии проявляют водородную связь в незначительной степени, т.к. с повышением температуры энергия водородной связи уменьшается.
3.10 Межмолекулярное взаимодействие
Известны следующие агрегатные состояния веществ: газообразное, жидкое и твердое. Жидкое и твердое состояния называют также конденсированным состоянием. Любое вещество при определенных условиях может быть получено в кристаллическом состоянии.
Каждое из этих состояний определяется соотношением между силами отталкивания и притяжения молекул. Силы притяжения или сцепления между молекулами были установлены Ван-дер-Ваальсом (1873 г.) и были названы вандерваальсовыми.
Ван-дер-ваальсовы силы зависят прежде всего от расстояния между центрами взаимодействующих молекул. На больших расстояниях эти силы ничтожно малы (при нормальных давлениях). В газах, находящихся под высоким давлением, силы межмолекулярного взаимодействия следует учитывать. Энергия межмолекулярного взаимодействия невелика и составляет около 8-47 кДж/моль, т.е. в 10-100 раз меньше энергии химического взаимодействия между молекулами.
Поскольку в жидкости расстояния между молекулами меньше, чем в газе, в ней Ван-дер-ваальсовы силы проявляются в большей степени (сфера действия этих сил - 10 А0). Жидкость частично может обладать упорядоченной структурой (ближний порядок), т.е. часть молекул в ней сохраняет определенное пространственное расположение, объединившись в некоторый микрокристаллит, при более низкой температуре их образуется больше.
В твердых телах поступательное движение молекул отсутствует: частицы могут совершать лишь колебательные движения около определенных центров равновесия. Силы межмолекулярного взаимодействия в данном агрегатном состоянии имеют наибольшее значение, а расстояние между молекулами достигает некоторого минимума.
Природа Ван-дер-ваальсовых сил. Различают три типа электростатического взаимодействия: ориентационное, индукционное и дисперсионное.
1) Ориентационное им диполь - дипольное взаимодействие проявляется между полярными молекулами. При сближении таких молекул они ориентируются. Одноименно заряженные концы диполей взаимноотталкиваются, а противоположные - притягиваются. Чем более полярны молекулы, тем упорядоченнее ориентация. Повышение температуры уменьшает ориентационное взаимодействие молекул.
2) Индукционное взаимодействие происходит между полярной и неполярной молекулами.
µ ? 0 µ = 0
Электрическое поле полярной молекулы может индуцировать диполь (мi ? 0), следовательно, молекула становится индуцировано-полярной. Возникает индуцированное взаимодействие. Индуцирование приводит к деформации электронной оболочки молекулы, поэтому этот тип взаимодействия называют иногда деформационным. Эффект индуцирования не зависит от температуры раствора, а зависит от напряженности электрического поля молекулы.
Третий тип взаимодействия (взаимодействие между неполярными молекулами) называется дисперсионным. Хотя у обоих неполярных молекул дипольный момент равен нулю, вследствие пульсирующего движения электронного облака (или движения электронов внутри молекулы) в одной из молекул на мгновение возникает незначительный дипольный момент, который индуцирующе действует на соседнюю молекулу. Между этими молекулами возникает дисперсионное взаимодействие. Для реальных молекул при их взаимодействии проявляются все три типа взаимодействия: ориентационное, индуцированное и дисперсионное. Общая энергия притяжения между молекулами Eобщ., является суммой энергий ориентационного (Eо), индуцированного (Eи) и дисперсионного (Eд) взаимодействия
Eобщ. = Eо + Eи + Eд
Таким образом, Ван-дер-ваальсовы силы обусловлены электрическими полями молекул или атомов.
Глава 4. КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ ВЕЩЕСТВА
Любое вещество может находиться в трех агрегатных состояниях: газообразном, жидком и твердом. Наименьшее влияние сил межмолекулярного взаимодействия наблюдается в газообразном состоянии, так как плотность газов мала и молекулы их находятся на больших расстояниях друг от друга. Газы, находящиеся при температурах, значительно превышающих их критическую температуру, и при давлениях ниже критического считаются «идеальными». К идеальным газам применима статистика Максвелла-Больцмана и уравнение состояния идеального газа Клапейрона-Менделеева. Однако при точных расчетах нужно вносить поправки на межмолекулярное взаимодействие (Рандалл, Льюис). Величины критической температуры и критического давления зависят от строения молекул газа, так как при понижении температуры ниже Ткрит и при повышении давления газ начинает конденсироваться, или под действием межмолекулярных сил между отдельными молекулами вещество переходит в жидкое состояние.
Процесс конденсации газов сопровождается значительным выделением энергии.
следует отметить, что при комнатной температуре баллон с кислородом будет содержать газ (Ткомн. > Ткрит.) при давлении 150 ат., а в баллонах с СО2 или пропан-бутановой смесью (Ткомн < Ткрит), будут содержаться жидкости и давление в них определяется упругостью насыщенного пара, зависящей от температуры. В жидкости молекулы находятся на малых расстояниях друг от друга и силы межмолекулярного взаимодействия весьма значительны, что создает очень большое внутреннее когезионное давление (долгое время жидкость считали несжимаемой), увеличивает вязкость жидкостей при течении и создает поверхностное натяжение на границе раздела - жидкость - пар. Поверхностное натяжение обусловливает форму жидкостей: жидкость в состоянии невесомости принимает форму идеального шара (максимальный объем при минимальной поверхности).
При понижении температуры плотность жидкостей растет, молекулы сближаются, и возрастает энергия межмолекулярного взаимодействия; при вполне определенном значении температуры (температура кристаллизации или плавления) вещество переходит в твердое состояние, которое характеризуется упорядоченным расположением частиц в пространстве - кристаллическим строением. Для зарождения кристаллов необходимы некоторые условия: переохлаждение жидкости ниже температуры плавления (доли градусов), появление субмикроскопических центров кристаллизации - зародышей выше критических размеров, которые, постепенно увеличиваясь, превращают жидкость в кристаллическую массу (центрами кристаллизации могут явиться и твердые частицы примесей). Кристаллизация протекает с выделением энергии, но менее значительным, чем при конденсации. Процессом кристаллизации можно управлять, и этим пользуются в технологии, получая мелкокристаллические или крупнокристаллические структуры, а также выращивая монокристаллы. При очень большом переохлаждении жидкости с большой вязкостью (кремнезем, силикаты и алюмосиликаты) могут перейти в стекловидное состояние, в котором сохраняется неупорядоченная структура. Этим, например, пользуются при изготовлении стекол или ситаллов (частично закристаллизованное стекло).
Кристаллы можно получать, минуя жидкое состояние, путем конденсации пара на охлажденной стенке (подложка). Так наносят металлические слои на различные материалы - вакуумное напыление.
4.1 Макроскопические свойства кристаллов
Обычно твердое тело характеризуется тем, что оно стремится сохранить не только свой объем, но и приданную ему форму (стержень, пластина и т.д.). Из этого определения, которое охватывает все тела, обычно называемые твердыми, следует выделить кристаллические тела, форма которых обусловлена их внутренним строением, в отличие от квазитвердых тел - стекол (которые можно рассматривать как жидкости с бесконечно большой вязкостью), полимерных материалов и т.д.
Кристаллические вещества могут представлять собой один кристалл - монокристалл - или соединение большого числа кристаллических зерен - поликристаллы (металлы), но во всех случаях они проявляют свои особые свойства: постоянная температура плавления, анизотропность.
Анизотропией кристаллов называют различие их свойств в зависимости от направления относительно осей симметрии, поскольку кристалл представляет собой симметричную фигуру. В поликристаллических телах (металлы) анизотропия проявляется слабее, так как кристаллические зерна могут быть ориентированы хаотично - псевдоизотропия. В определенных условиях, а именно при пластической деформации, поликристаллические металлы проявляют свою анизотропность. Квазитвердые тела этим свойством не обладают и являются изотропными.
Кристаллом является твердое тело, ограниченное плоскими гранями, пересекающимися под определенными углами. Форма кристаллов характеризуется не столько соотношением сторон, сколько двугранными углами, возникающими между пересекающимися плоскими гранями.
Одно и то же вещество, кристаллизуясь в различных условиях, может образовать кристаллы различной формы - полиморфизм.
Так, например, полиморфизмом обладает диоксид кремния SiO2, образующий 6 различных форм кристаллов: б- и в- кварцы, б- и в- тридимиты, б- и в -кристобалиты.
Различные вещества могут образовать одинаковые формы кристаллов, обладающие при этом разным составом, - изоморфизм. Так, например, двойные соли (так называемые квасцы) KAl (SO4)2•12H2O и KCr (SO4)2•12H2O кристаллизуются в одной и той же системе и могут свои кристаллы наращивать на кристаллы других квасцов.
Различные формы кристаллов можно систематизировать, изучая их геометрию и симметрию. Е. С. Федоров (1890) систематизировал кристаллы на основе их симметрии и разработал методы количественной оценки степени симметрии по осям, плоскостям и центрам симметрии и их порядку.
Порядком оси симметрии является число повторений геометрических элементов при повороте фигуры относительно этой оси на угол 2р = 360°. Например, для такой элементарной фигуры, как куб, можно найти оси симметрии четвертого и второго порядков; такие же оси симметрии определяют собой и другую фигуру - октаэдр.
Плоскость, делящая кристалл на две зеркально отображающиеся части, называется плоскостью симметрии.
Центр симметрии, совпадающий у куба с его геометрическим центром, также характеризует симметрию кристалла.
Кристаллические системы Е.С. Федорова характеризуются взаимным расположением осей (углы между ними) и соотношением их длин. В пределах каждой системы могут быть модификации за счет усложнения форм граней, но при сохранении элементов симметрии, что в конечном итоге дает колоссальное разнообразие внешних форм кристаллов.
Так как кристаллических веществ очень много, то изучение их геометрических структур и свойств, зависящих от геометрии кристалла, развилось в особую науку - кристаллографию, основы которой были заложены Е. С. Федоровым. Внешняя форма кристалла является отображением его внутренней структуры, созданной взаимным расположением частиц в пространстве.
4.2 Внутреннее строение кристаллов
Связь между формой макро- или микрокристалла и его внутренним строением, определяемым распределением элементарных материальных частиц в пространстве, удалось установить после открытия рентгеновских лучей.
При прохождении через кристалл узкого параллельного пучка рентгеновских лучей наблюдается их дифракция и интерференция (Лауэ, 1912). На регистрирующей фотопластинке кроме центрального пятна появляется большое количество пятен, расположение которых характерно для данного кристалла и угла поворота его к направлению рентгеновского луча.
В 1913 г. У.Г. и У.Л. Брэгги предложили уравнение, связывающее расстояние между плоскостями в кристалле, вызывающими явление интерференции, длину волны рентгеновского луча и угол между направлением луча и плоскостью кристалла
?,
где л - длина волны рентгеновского луча, d - расстояние между плоскостями, ? - угол между лучом и плоскостью или угол скольжения, п - целое число (условие усиления лучей).
Длина волны рентгеновского луча зависит, как известно, от материала антикатода.
Восстановив по фигурам интерференционных пятен расположение в пространстве частиц, вызвавших дифракцию, можно сделать вывод о внутреннем строении кристалла.
Таким образом, внутреннее строение кристаллов представляется как система атомов, определенным образом расположенных в пространстве, - кристаллическая решетка.
Элемент кристаллической решетки или элементарная ячейка - геометрическая фигура, образованная материальными частицами, расположенными определенным образом в пространстве, мысленно выделенная из общего тела кристалла.
Последнее добавление в формулировке необходимо потому, что кристаллическая решетка не представляет собой сумму изолированных кристаллических ячеек (например, кубов), а каждая частица, входящая в данную ячейку, одновременно принадлежит и окружающим ее кристаллическим элементам.
Оказалось, что число форм кристаллических ячеек меньше, чем форм макрокристаллов, так как скорость распространения этих ячеек по осям симметрии может быть различной, что и приводит к построению различных по форме макрокристаллов. Плоская грань кристалла может представлять собой ступенчатую поверхность, образованную слоями кристаллических ячеек, но она кажется нам идеально гладкой, так как высота этих ступенек измеряется ангстремами. Исходя из внутреннего строения кристалла, можно дать другое определение кристаллического тела: кристалл - часть пространства, заполненная параллельной трансляцией геометрического элемента, называемого элементарной ячейкой.
Рассмотрим элементарную ячейку простого куба и определим ее основные характеристики. Важнейшей характеристикой куба является величина его ребра а. Однако не всегда расстояние между его плоскостями d, заполненными материальными частицами и вызывающими дифракцию и интерференцию рентгеновских лучей, равно величине ребра: d = a. В кубе можно провести несколько плоскостей (рис. 32). Их индикация определяется числом пересечений с осями координат: это плоскости 100, 110 и 111. Если рентгеновские лучи падают перпендикулярно плоскости 100 (рис. 33, а), то они встретят 2 плоскости и расстояние между плоскостями будет равно d100; если они перпендикулярны плоскости 110, то d110 = так как плоскостей будет уже 3 и расстояние между плоскостями равно половине диагонали грани куба (рис. 33, б), а если лучи будут падать перпендикулярно плоскости 111, то они встретят уже 4 плоскости и расстояние между этими плоскостями равно d 111 = (рис. 33, в).
Рис. 32. Рентгенографические плоскости в простой кубической решетке
Рис. 33. Схема встречи рентгеновских лучей с плоскостями в кристалле кубической системы
Отношение обратных величин d100, d110 и d111 является характеристикой для данного типа кристаллической решетки:
::=1::
Это соотношение, постоянное для данной решетки, в конечном итоге определяет отношение расстояний на рентгенограмме кристалла (рис. 33).
Вторая важная характеристика любой элементарной ячейки - координационное число: координационным числом называется число одинаковых частиц, расположенных на кратчайшем расстоянии от данной частицы (число ближайших соседей). Для простого куба на кратчайшем расстоянии от частицы А равным а расположено 6 частиц, т.е. координационное число K = 6.
Другой характеристикой элементарной ячейки является число частиц, необходимое для ее построения. каждая частица, находящаяся в вершине куба, принадлежит одновременно 8 кубам, сходящимся в одной точке (А), а, следовательно, на данный куб приходится только 1/8 ее часть. Вершин в кубе 8 и для построения данного куба требуется только одна частица: n = (1/8) 8 = 1.
Зная число частиц, необходимых для построения элемента кристаллической решетки, массу этих частиц и плотность кристалла, можно определить сторону куба, а, следовательно, и значения d, входящих в уравнение Брэггов, а это в свою очередь было необходимо для определения длины волны л рентгеновских лучей, получаемых от различных антикатодов. Если бы этого не было сделано, то Мозли не смог бы открыть свой закон.
В самом деле, зная систему кристаллической решетки и элементарной ячейки, число частиц, необходимое для построения, их массы и плотность кристалла, можно определить все геометрические размеры. Для кубических форм элементарных ячеек эта задача решается наиболее просто.
Если число частиц n, а масса их A/N, где А - атомная масса, а N - число Авогадро, то масса элементарной ячейки будет m = nA/N. Объем элементарной ячейки выразим через плотность кристалла с, и он будет равен кубу стороны:
х = (nA/сN) = a3. Отсюда величина ребра куба
a=
Элементарный куб - тип NaCl, n = l; K = 6, но так как в узлах элементарной ячейки находятся ионы Na+ и ионы Сl-, то это необходимо учесть: n = (l/8) 4Na++ (l/8) 4Cl- = (l/2) NaCl, т.е. требуется половина молекулы для построения ячейки
a =
Плотность кристалла NaCl с = 2,164•103 кг/см3; MNaCl = 58,5 кг/кмоль; число Авогадро N = 6,02•1026кмоль-1. Подставляем данные в уравнение и получаем
=2,814 ?
Объемноцентрированный куб - тип CsCl. В этом случае К = 8; n = (1/8) 8+1 = 2. При построении ячейки также нужно учесть, что в узлах элементарной ячейки находятся ионы Cs+ и Сl-. Тогда Cs+ + Cl- = CsCl или уравнение для этого случая будет
а =
4.3 Виды элементарных ячеек
Частицами, из которых построены элементарные ячейки, могут быть атомы, молекулы, ионы и атомы металлов, связанные между собой металлической связью. Мы различаем следующие типы кристаллических решеток: атомные, молекулярные, ионные и металлические.
Атомные решетки построены из атомов, связанных между собой ковалентными неполярными связями. Эти химические связи определяют геометрию кристаллов и энергию кристаллической решетки, которая характеризует прочность и устойчивость данного кристалла. Так как строение атома периодично, то, казалось бы, и строение кристаллов тоже должно быть периодичным, но это выполняется не строго, поскольку атомы могут перестраивать свои орбитали при различных степенях возбуждения и таким образом изменять свои химические связи. Это ведет к образованию различных форм кристаллов - полиморфизму или аллотропическим модификациям у данного элемента. У его электронных аналогов, находящихся в разных периодах, возможно возникновение других форм связи за счет наличия другого числа свободных орбиталей.
Координационное число атомной решетки должно зависеть от распределения электронов внешнего уровня и количества валентных орбиталей. Это хорошо учитывает правило Юм-Розери, которое можно представить следующим образом: K = 8 - N,
где К - координационное число, N - номер группы в периодической системе Д. И. Менделеева. Так, например, кристаллы иода, находящегося в VII группе и имеющего электронную формулу s2p5 по Юм-Розери, должны иметь координационное число, равное 1.
В действительности кристаллы иода состоят из отдельных молекул - I2, связанных между собой межмолекулярными силами. Кристаллы иода очень непрочны и легко при нагревании переходят в пар (сублимация), состоящий из молекул I2. По существу, кристаллы, иода следует отнести к молекулярным кристаллам.
Кристаллы кислорода, которые по правилу 8 - N имеют К = 2, представляют собой цепочечные структуры, а сера, атомы которой имеют свободные орбитали и могут возбуждаться, дает уже две аллотропические формы - моноклиническую и ромбоэдрическую серу, кристаллы которых образованы за счет дополнительных связей. Однако сера имеет и другие кристаллические формы, образованные цепочками из атомов серы, подобно кислородным.
Рис. 34. Кристаллические структуры фосфора
Кристаллы азота с координационным числом 3 (К = 8 - 5) тоже очень непрочные (tплавл = - 209,86 С°), а его электронный аналог фосфор образует или молекулярную решетку из молекул Р4, в которой сохраняется координационное число 3 (рис. 34, а), - белый фосфор, или образует красный фосфор переменной структуры и только при особых условиях (200 °С и 12 000 атм.) образует черный фосфор Бриджмена, также имеющий слоистую структуру с координационным числом 3. Структура черного фосфора показана на рис. 34, б.
Наиболее типичными атомными кристаллами являются кристаллы алмаза. Так кристаллизуется углерод; его атомы находятся в состоянии s1p3 и орбитали их полностью гибридизированы. Координационное число кристалла алмаза 4, что также соответствует правилу Юм-Розери. Кристаллическая решетка алмаза представляет собой центрированный тетраэдр, который можно отнести к кубической системе, так как он вписывается в куб, а макроформа кристаллов алмаза представляет собой модифицированный куб.
Элементарная ячейка алмаза довольно сложна. Она представляет собой гранецентрированный куб, в который еще дополнительно вписано 4 атома углерода. Число частиц, необходимое для построения такой элементарной ячейки, n = (1/8)
Рис. 35. Элементарная ячейка алмаза: а - гибридные орбитали; б - тетраэдр; в - тетраэдр вписанный в куб; г - элементарная ячейка алмаза
8 + (1/2) 6 + 4 = 8. Координационное число 4, так как в данном случае оно равно числу гибридных орбиталей атома углерода. Формы гибридных орбиталей, связи между углеродными атомами в кристалле алмаза и элементарная ячейка алмаза приведены на рис. 35, а, б, в, г.
Однако кроме алмаза, обладающего наибольшей твердостью из всех твердых тел (за счет очень малых межатомных расстояний - 1,54 ?), углерод образует кристаллы графита. В его решетку входят тоже возбужденные атомы углерода, но, с
неполностью гибридизированными орбиталями, вследствие чего расстояния между атомами в кристаллической решетке графита (в плоскости и межплоскостном расстоянии) различны и в результате графит оказывается очень мягким, легко скалывающимся по плоскостям спайности. Графит применяется в машинах как высокотемпературная смазка, в то время как алмазные резцы обрабатывают самые твердые материалы.
Неполностью гибридизированный атом углерода и кристаллическая решетка графита приведены на рис. 36.
Кристаллы графита более устойчивы, чем кристаллы алмаза, которые при нагревании около 1000 °С (без доступа воздуха) переходят в графит. Кристаллы графита проводят электрический ток по типу полупроводников < 0, так как не все связи между атомами углерода строго локализованы и миграция связей создает условия полупроводимости.
Третья кристаллическая модификация углерода - карбин - образует гексагональную решетку из цепочек, образованных атомами углерода. Расстояние между атомами углерода в карбине очень мало (1,284 А). Карбин обладает также полупроводниковыми свойствами. Схема цепочки атомов углерода в карбине показана на рис. 37.
Рис. 36. Кристаллическая структура графита
Рис. 37. Цепочная структура кристаллов карбина
Четвертая кристаллическая модификация углерода - фуллерен. Он был экспериментально открыт в 1985 г. и является частицей состоящей из 60 атомов углерода с массой 12 атомных единиц каждый (С60). Схема молекулы показана на рис. 38
Она имеет 12 пентагональных (пятиугольных) и 20 гексагональных (шестиугольных) симметрично расположенных граней, образующих форму, близкую к шару. На самом деле, геометрия молекулы фуллерена ближе к форме футбольного мяча, также состоящего из пяти- и шестигранных фасеток. Эти шарообразные молекулы могут соединяться друг с другом в твердом теле с образованием гранецентрированной (ГЦК) кристаллической решетки, показанной на рис. 39.
Рис. 38. Структура молекулы фуллерена С60
Рис. 39. Элементарная ячейка кристаллической решетки фуллерена С60 (большие шары), легированного щелочными атомами (темные кружки)
Расстояние между центрами ближайших молекул в гранецентрированной решетке, удерживаемых слабыми Ван дер Ваальсовыми силами, имеет наноразмеры. Поскольку С60 растворим в бензоле, его монокристалл можно вырастить при медленном выпаривании раствора С60 в бензоле. Наиболее интересными наноструктурами с широким потенциалом применения являются углеродные нанотрубки. Углеродную нанотрубку можно представить себе как лист графита, свернутый в цилиндр. На рис. 40 показано несколько возможных структур, образованных сворачиванием графитового листа вокруг разных осей. Однослойная нанотрубка может иметь диаметр 2 нм и длину 100 микрон, что делает ее квазиодномерной структурой, способной служить нанопроволокой.
Рис. 40. Примеры некоторых из возможных структур углеродных нанотрубок, зависящих от способа сворачивания графитового листа: (а)- кресельская структура, (б)- зигзагообразная структура, (в)- хиральная структура
Углеродные нанотрубки можно получить лазерным испарением, углеродной дугой и химическим осаждением паров. На рис. 41. показана установка для производства нанотрубок лазерным испарением. Кварцевая трубка, содержащая газообразный аргон и мишень из графита, нагревается до 1200 °С.
Рис. 41. Экспериментальная установка для синтеза углеродных нанотрубок лазерным испарением
Внутри трубки, но за пределами печи находится охлаждаемый водой медный коллектор. Графитовая мишень содержит небольшие количества кобальта и никеля, выступающие в качестве каталитических зародышей образования нанотрубок. При попадании высокоинтенсивного пучка импульсного лазера на мишень графит испаряется. Поток аргона выносит атомы углерода из высокотемпературной зоны к охлаждаемому медному коллектору, на котором происходит образование нанотрубок. Таким методом можно получить трубки диаметром 10 - 20 нм и длиной 100 микрон.
Нанотрубки можно синтезировать, используя и углеродную дугу. К электродам из углерода диаметром 5-20 мм, разнесенным на расстояние около 1 мм, в потоке гелия при давлении 500 Торр прикладывается напряжение 20-25 В. Атомы углерода вылетают из положительного электрода и образуют нанотрубки на отрицательном, при этом длина положительного электрода уменьшается, а на отрицательном электроде осаждается углеродный материал. Для получения однослойных нанотрубок в центральную область положительного электрода добавляют небольшие количества кобальта, никеля и железа в качестве катализаторов. Если не использовать катализаторы, получаются вложенные или многослойные нанотрубки, то есть нанотрубка внутри нанотрубки, как показано на рис. 42. Дуговым методом можно получить однослойные нанотрубки диаметром 1-5 нм и длиной порядка 1 мкм.
Рис. 42. Схема вложенных нанотрубок, когда одна трубка находится внутри другой
Методом химического осаждения из паровой фазы заключается в разложении газообразного углеводорода, например, метана (СН4), при температуре 1100 °С. При разложении газа образуются свободные атомы углерода, конденсирующиеся затем на более холодной подложке, которая может содержать разнообразные катализаторы, такие как железо. Этот процесс позволяет получать продукт непрерывно и, возможно, является наиболее предпочтительным для увеличения масштабов при промышленном производстве.
Механизм роста нанотрубок до сих пор неясен. Так как для роста однослойных трубок необходим металлический катализатор, механизм должен объяснять роль атомов кобальта или никеля. Одно из предложений, называемое «механизмом скутера», состоит в том, что атомы металлического катализатора присоединяются к оборванным связям на открытом конце трубки и, обегая ее по краю, способствуют захвату атомов углерода из паровой фазы и их встраиванию в стенку трубки.
Обычно при синтезе получается смесь нанотрубок раз-
ных типов с различным характером и величиной электропроводности. Группа из IBM разработала метод отделения полупроводящих нанотрубок от металлических. Для разделения смешанные пучки нанотрубок осаждают на кремниевую подложку, а затем на эти пучки напыляют металлические электроды. Используя подложку как электрод, на него подают небольшое напряжение смещения, запирающее полупроводниковые трубки и эффективно превращающее их в изоляторы. Затем между металлическими электродами прикладывается высокое напряжение, создающее большой ток в металлических нанотрубках, что приводит к их испарению, после чего на подложке остаются только полупроводниковые нанотрубки.
Молекулярные кристаллы представляют собой молекулы, соединенные силами межмолекулярного взаимодействия, включая и другие дополнительные виды связей. Кристаллы молекулярного типа характерны для органических веществ, а также и других, в молекулы которых входят атомы с близкими значениями электроотрицательностей (так как в противном случае будет проявляться также связь ионного типа).
Ионные кристаллы построены из отдельных разноименно заряженных ионов. Энергия ионных кристаллических решеток должна создаваться за счет электростатических сил взаимодействия, однако, как это было указано ранее, ионной связи в чистом виде не бывает и между ионами в какой-то степени сохраняется также ковалентная связь.
Кроме того, между ионами возникает явление поляризации, что также влияет на энергию ионной кристаллической решетки.
Расчет энергии кристаллических решеток различных соединений дает величины 700 - 1000 кДж/моль, что, вообще говоря, близко совпадает с опытными данными.
Геометрические формы кристаллов простых неорганических соединений (галидов, оксидов) обычно не очень сложны и определяются соотношением радиусов ионов. В присутствии ионов с большим обобщенным потенциалом, вызывающим поляризацию, происходит усложнение кристаллической решетки.
Наиболее простыми кристаллическими решетками ионного типа являются решетки NaCl и CsCl, рассмотренные нами ранее. Однако в кристаллах веществ, содержащих комплексные ионы, структура элементарных ячеек может быть очень сложной. Также очень сложными структурами обладают кристаллы, построенные за счет весьма устойчивого координационного числа 4, характерные для диоксида кремния и его многочисленных соединений.
4.4 Металлическая связь
Металлические кристаллы отличаются от всех остальных кристаллов высокой пластичностью, электропроводностью и теплопроводностью. Эти свойства, а также и многие другие, обусловлены особым видом связи между атомами металла - металлической связью. Она возникает между атомами металлов в результате их сближения за счет перекрывания внешних орбиталей. Эта связь не является ковалентной неполярной связью, так как электроны не фиксируются между двумя атомами, а переходят в состояние проводимости и могут принадлежать всем атомам данного кристалла и даже куска металла, содержащего громадное количество кристаллических зерен. Эти мигрирующие электроны, или обобщенные электроны, - электроны проводимости (свободные электроны или электронный газ) - и осуществляют ненаправленную связь между остовами атомов в кристаллической решетке металлов.
Металлическая связь представляет собой результат перекрытия делокализованных орбиталей атомов, сближающихся между собой в кристаллической решетке металлических кристаллов.
Особенностью кристаллической структуры металлов являются высокие координационные числа (8-12), свидетельствующие о большой плотности упаковки в кристаллических ячейках. Высокая плотность упаковки объясняется тем, что остовы атомов, лишенные внешних электронных уровней, укладываются в пространстве как шары одинакового радиуса. Типичные для металлов кристаллические решетки показаны на рис. 43.
ОЦК - Объемноцентрированная кубическая решетка (К 8) (рис. 43, а) характеризуется следующими данными: а) координационное число К = 8; б) кратчайшее расстояние между центрами атомов равно половине диагонали куба ; в) число атомов, необходимое для построения, п = 2, так как 8 вершин содержат 1/8 атома, приходящегося на данный куб, и в центре куба находится еще один атом;
Рис. 43. Металлические решетки
г) плотность упаковки или часть пространства, занятая атомами в данном кубе, составляет ~68 %. В таких решетках кристаллизуются К, Na, W, б- Fe, в- Ti и др.
ГЦК - Гранецентрированная кубическая решетка (К 12) (рис. 43, б) определяется следующими данными: а) координационное число К = 12; б) кратчайшее расстояние между центрами атомов равно половине диагонали грани ; в) число атомов, необходимое для построения, равно 4, так как на все вершины нужен только один атом, а атом, находящийся в центре грани, наполовину принадлежит данному кубу, а таких граней 6. Следовательно, n = 8(1/8) + 6(1/2) = 4; г) плотность упаковки в данной решетке составляет ~74 %. В таких решетках кристаллизуются Сu; Ni; г- Fe; Pb и др.
ГПУ - Гексагональная решетка плотной упаковки (Г 12) (рис. 43, в) более сложная, но по степени упаковки совпадает с гранецентрированной кубической. Ее данные: а) координационное число К = 12; б) кратчайшее расстояние между центрами атомов а равно стороне правильного шестиугольника основания призмы. Все атомы, если их представить шарами радиусом а/2, будут в этой решетке касаться друг друга. Поэтому высота призмы h в идеальном случае (Mg, Be) должна быть равна 1,63 а или двум высотам тетраэдров, построенных из этих шаров; в) число атомов, необходимых для построения, равно 6. На каждой вершине призмы расположен атом, одновременно принадлежащий шести сходящимся в одной точке решеткам. Вершин 12 x 1/6 = 2. В центре верхнего и нижнего основания лежат атомы, половина которых относится к данной решетке: 2 x 1/2 = l. Внутри призмы находятся еще три атома и всего получается n = 12 х 1/6 + 2 х 1/2 +3 = 6; г) плотность упаковки 74 %. В таких решетках кристаллизуется Be, Mg, Zn, б- Ti и др.
4.5 Реальные кристаллы и нарушения кристаллической структуры
Дефекты кристаллической структуры. По мере совершенствования методов изучения кристаллов (прецизионные методы рентгеновского анализа, микроскопия и электроноскопия) оказалось, что кристаллические тела не являются идеальными, a обладают рядом дефектов кристаллической структуры. Грубые дефекты кристаллической структуры, образующиеся при получении кристаллов, поры, трещины обычно получаются при нарушении технологии отливки или сварки металлов или при выращивании кристаллов из расплавов, растворов или из газовой фазы. Нарушения микроструктуры кристаллов обнаруживаются c большим трудом, но так как они сильно влияют на физические свойства твердых тел, то их изучение в настоящее время ведется весьма интенсивно. Все дефекты кристаллической структуры можно условно разделить на два типа: точечные и линейные.
Точечные дефекты или вакансии возникают за счет смещения отдельных частиц в кристалле с их мест в кристаллической решетке с образованием вакансии и атома или иона в междоузлии. Вероятность возникновения таких дефектов увеличивается в зависимости от температуры по экспоненциальному закону:
,
где n - число вакансий в единице объема кристалла; Q - энергия образования пары вакансия - атом в междоузлии; R - газовая постоянная; Т - абсолютная температура; а - постоянная величина для данного кристалла. Вакансии могут возникать в решетках любого типа, ослабляя связи между частицами в кристалле, и прочность кристаллических веществ практически обращается в нуль раньше, чем они полностью перейдут в жидкое состояние.
На рис. 44, а, приведена идеальная кристаллическая решетка; решетка с атомами в междоузлиях и вакансиями (Френкель) показана на рис. 44, б, а возникновение вакансий за счет поверхностного испарения (Шоттки) приведено на рис. 44, в.
Вакансии в кристалле перемещаются, так как их место может быть занято соседними атомами. Вакансии могут скапливаться в каком - нибудь одном месте - коагуляция вакансий.
Линейные дефекты или дислокации возникают при пластических деформациях кристалла и нарушении совпадения кристаллических плоскостей. Линейные дислокации могут зарождаться не только за счет внешней силы, вызывающей деформацию, но и за счет внутренних напряжений (при нагреве или охлаждении и т. д.).
Рис. 44. Точечные дефекты в кристаллах:
а - идеальная решетка; б - вакансии по Френкелю;
в - вакансии по Шоттки
На рис. 45 показано возникновение дислокации при пластической деформации идеального кристалла.
Дислокации могут быть положительными и отрицательными, a самое главное, они могут перемещаться в теле кристалла, накапливаться в месте наибольших напряжений и т.д. Дислокации могут выходить на поверхность кристалла и создавать нарушения поверхностного слоя.
Винтовые дислокации также возникают при деформациях, но уже сдвига. На рис. 46 показано возникновение двух дислокаций - правой и левой - при неполном сдвиге одной части кристалла относительно основной его массы.
Центр выхода винтовой дислокации является высокоактивной точкой поверхности, способной к дальнейшему развитию в виде винтовых нитевидных монокристаллов («усы»), обладающих прочностью, близкой к теоретической.
...Подобные документы
Технологии получения углеродных нанотрубок. Использование их в эмиссионной электронике. Создание токопроводящих соединений, сверхбыстрых транзисторов на основе атомов углерода. Производство наноэлектронных приборов. Электрические свойства нанотрубки.
презентация [557,0 K], добавлен 24.05.2014Роль полупроводников в микро- и оптоэлектронике. Классификация полупроводниковых материалов. Диапазон электрических параметров различных полупроводников. Особые физико-химические свойства кремния. Применение германия в полупроводниковых приборах.
контрольная работа [1,0 M], добавлен 15.12.2015- Исследование нелинейно-оптических процессов в неоднородных средах на основе пористых полупроводников
Кремний как материал современной электроники. Способы получения пористых полупроводников на примере кремния. Анализ процесса формирования, методов исследования, линейных и нелинейных процессов в неоднородных средах на основе пористых полупроводников.
дипломная работа [6,3 M], добавлен 18.07.2014 Структура полупроводниковых материалов. Энергетические уровни и зоны. Электро- и примесная проводимость полупроводников. Виды движения носителей. Свойства электронно-дырочного перехода. Электропроводимость полупроводников в сильных электрических полях.
реферат [211,5 K], добавлен 29.06.2015Классификация, температурные зависимости концентрации, подвижностей носителей заряда собственных и примесных полупроводников. Общая характеристика и основные сведения о кристаллическом строении полупроводниковых материалов Si и Ge, методика выращивания.
курсовая работа [1,5 M], добавлен 08.05.2009Полупроводники и их физические свойства. Генерация и рекомбинация свободных носителей заряда. Влияние донорных и акцепторных примесей. Понятие р-п -перехода и факторы, влияющие на его свойства. Полупроводниковые диоды и биполярные транзисторы, их виды.
контрольная работа [1,2 M], добавлен 19.03.2011Общие сведения о сегнетоэлектриках, диэлектрические свойства и электропроводность, линейные и нелинейные свойства. Сегнетоэлектрики и антисегнетоэлектрики, области спонтанной поляризации (доменов). Направления применения сегнетоэлектрических кристаллов.
курсовая работа [10,0 M], добавлен 29.07.2009Общие сведения о графене - двумерной аллотропной модификации углерода, история его открытия, структура, псевдомагнитные свойства. Получение нового полупроводникового материала на основе графена. Один из способов создания графенового двоичного триггера.
доклад [3,8 M], добавлен 20.05.2013Общие сведения о резисторах, классификация, система условных обозначений и маркировка. Основные электрические параметры и свойства резисторов. Характеристики и свойства переменных и постоянных резисторов, назначение и использование резисторных наборов.
реферат [33,4 K], добавлен 30.08.2010Принципы работы полупроводниковых приборов. Физические основы электроники. Примесная электропроводность полупроводников. Подключение внешнего источника напряжения к переходу. Назначение выпрямительных диодов. Физические процессы в транзисторе, тиристоры.
лекция [4,4 M], добавлен 24.01.2014Отличия энергетических диаграмм проводников, полупроводников и диэлектриков. Принцип работы биполярного транзистора. Фотодиод: принцип работы, параметры и назначение. Определение параметров биполярных транзисторов, включенных но схеме с обидим эмиттером.
контрольная работа [1,4 M], добавлен 05.07.2014Понятие и общая характеристика приборов - излучателей или приемников электромагнитных волн. Описание детекторных радиоприемников, принципы работы диода и триода. Устройство транзистора, свойства полупроводников, особенности возникновения p-n перехода.
реферат [85,4 K], добавлен 17.03.2011Макромир, микромир, наномир, мир элементарных частиц: основные положения квантовой теории; свойства микро- и наночастиц. Основы микроскопии в электронике. История создания технологических микрообъектов. Наноэлектронные элементы информационных систем.
курсовая работа [1,7 M], добавлен 15.06.2013Начало использования полупроводников 1940-50-е годы. Появление и использование первых интегральных схем. Появление БИС микропроцессоров в 1970-е годы. Распространение архитектуры intel. Развитие технологий литорафии. Усложнение техпроцесса в 2000-е годы.
реферат [84,0 K], добавлен 22.03.2015Строение твердых тел, их энергетические уровни. Оптические и электрические свойства полупроводников. Физические эффекты в твердых и газообразных диэлектриках, проводниках, магнитных и полупроводниковых материалах. Токи в электронно-дырочном переходе.
курс лекций [1,7 M], добавлен 11.01.2013Электрофизические свойства полупроводниковых материалов, их применение для изготовления полупроводниковых приборов и устройств микроэлектроники. Основы зонной теории твердого тела. Энергетические зоны полупроводников. Физические основы наноэлектроники.
курсовая работа [3,1 M], добавлен 28.03.2016Электропроводимость полупроводников. Образование электронно-дырочной проводимости и ее свойства. Условное обозначение полупроводниковых приборов, классификация и основные параметры. Биполярные и МОП транзисторы. Светоизлучающие приборы и оптопары.
лекция [1,8 M], добавлен 17.02.2011Метод для исследования СВЧ диэлектриков при повышенных температурах. Характеристика волноводного, резонаторного и оптического методов. Пути разработки функциональной, принципиальной схемы измерительной установки и вопросов конструирования и технологии.
дипломная работа [655,4 K], добавлен 03.03.2011Криоэлектроника (криогенная электроника) – направление электроники и микроэлектроники, охватывающее исследование взаимодействия электромагнитного поля с электронами в твердых телах при криогенных температурах и создание электронных приборов на их основе.
реферат [124,3 K], добавлен 30.12.2008Этапы развития информационной электроники. Усилители электрических сигналов. Развитие полупроводниковой информационной техники. Интегральные логические и аналоговые микросхемы. Электронные автоматы с памятью. Микропроцессоры и микроконтроллеры.
реферат [1,0 M], добавлен 27.10.2011