Радиотехника и электроника
Учение о строении атомов и молекул. Сведения о полиморфных превращениях углерода, о наноуглеродных трубках и способах их получения. Свойства растворов неэлектролитов и электролитов. Физико-химические свойства металлов, полупроводников и диэлектриков.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 19.08.2017 |
Размер файла | 2,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Особенностью процесса является то, что посторонние анионы адсорбируясь на поверхности катода, препятствуют образованию на ней прочной окисной пленки и тем самым облегчают сорбцию и восстановление хромат-ионов.
Основными компонентами хромового электролита являются хромовые кислоты H2CrO4 и H2Cr2O7, посторонние анионы (SO42- и SiF62-) и соединения трехвалентного хрома. На практике чаще всего применяют электролит, содержащий 200 - 300 г/л CrO3 и 2,5 г/л Н2SO4.
Основным недостатком электролита является его повышенная токсичность. Применение электролитов хромирования c относительно низкой концентрацией CrO3 позволяет уменьшить загрязнение окружающей среды и улучшить условия труда в гальванических цехах. Известны способы нанесения хромовых покрытий из двух электролитов с концентрацией
CrQ3 60 г/л и 150 г/л. Осаждение хрома из этих электролитов можно проводить как в стационарных (с использованием постоянного тока), так и в нестационарных (с использованием импульсного тока) режимах. Покрытия осаждаются зеркально-блестящие, высокой коррозийной стойкости.
Цинкование. Электролитические покрытия цинком применяются для защиты от коррозии изделии из черных металлов (сталь, чугун) от коррозии. Цинком покрывают стальные листы, проволоку, ленту, детали машин и крепежа, водопроводные трубы, питательные резервуары и предметы домашнего обихода (из черного металла), соприкасающиеся с пресной водой при температуре 60 - 70 °С; бензобаки, бензино- и маслопроводы и др.
Электролиты для цинкования можно разделить на две основные группы: простые кислые (сернокислые, хлористые, борфтористоводородные и др.), в которых цинк находится в виде гидратированных ионов, и сложные комплексные, в которых оба металла присутствуют в виде комплексных ионов, заряженных отрицательно (анионы) или положительно (катионы). К комплексным электролитам относятся щелочно-цианистые, пирофосфатные, аммиакатные, аминокомплексные с различными органическими лигандами и др. Для цинкования применяются также щелочные нецианистые или цинкатные электролиты.
Наиболее широко применяют кислые электролиты. Кислые электролиты применяют главным образом для цинкования изделий простой формы. В присутствии некоторых органических добавок, повышающих катодную поляризацию, из кислых электролитов можно получать относительно равномерные по толщине светлые осадки и на рельефных деталях.
Одним из существенных недостатков сернокислых электролитов цинкования является их низкая буферная емкость. Для повышения буферной емкости электролитов вводят, например, сульфат алюминия, который тормозит образование основных соединений цинка (ZnO , Zп(OН)2 и др.), ухудшающих качество покрытий. Однако в присутствии Al2(SO4)3 нельзя повышать плотность тока более 2 А/дм2 т.к. при более высоких ее значениях повышается рН прикатодного слоя (рНs) до 4,2 и более, что является причиной резкого ухудшения качества покрытий.
В последние годы разработаны новые электролиты цинкования, в которые вводят более эффективные буферные добавки, чем сульфат алюминия - молочную, янтарную и другие кислоты. Разработанные электролиты, в сравнении о известными, позволяют повысить скорость процесса в 1,5 - 2 раза, а покрытия осаждаются лучшего качества, полублестящие и более коррозионностойкие (в 1,5 - 2 раза). В этих электролитах можно вести электролиз при плотности тока 5 А/дм2, температуре 18 - 25 °С и рН - 2,3 - 3,5.
Электроосаждение сплавов. В последние десятилетия большое внимание уделяется изучению процессов электроосаждения сплавов как у нас в стране, так и за рубежом. Этот интерес вызван тем, что электролитические сплавы, используемые в качестве покрытий, характеризуются в большинстве своем ценными физико-химическими и физико-механическими свойствами, отличными от свойств покрытий из чистых металлов. Применяют сплавы из двух и более компонентов. Так, например, сплав меди с цинком (желтая латунь) широко применяется для улучшения адгезии металла с резиной, сплав меди с оловом (белая бронза) обладает высокой отражательной способностью. Для защиты изделий от коррозии значительный интерес представляют сплавы хрома с металлами группы железа, а также хром-вольфрам, хром-молибден, хром-рений. Очень устойчивыми в агрессивных средах являются сплавь циркония и ванадия (Zr - Zn., Zr - Cd, V - Ni - Сr). Следует отметить, что уже изучено свыше 300 сплавов. Однако не все они нашли применение в промышленности. Технология электролитического получения многих сплавов разработана сравнительно недавно и еще полностью не установлены их свойства.
Особенностью процессов электроосаждения сплавов является то, что совместный разряд ионов различных металлов характеризуется одним из двух типов электрохимических систем.
В системах первого типа закономерности процесса при совместном разряде остаются такими же, как и при раздельном разряде ионов, такие систем называются несопряженными.
В системах второго типа (сопряженных, системах) вследствие взаимного влияния разряжающихся ионов скорости протекания отдельных электродных процессов при совместном разряде изменяются.
В практике электроосаждения сплавов чаще всего встречаются системы второго типа, которые называются реальными сопряженными в отличие от систем первого типа.
Для совместного разряда ионов при данных условиях необходимо соблюдение равенства:
E10 + RT/z1F·ln a1 - з1 = E20 + RT/z2F·ln a2 - з2 ,
где Е10 и E20 - стандартные потенциалы металлов,
a1 и a2 - активности разряжающихся ионов,
з1 и з2 - перенапряжение разряда ионов.
Согласно этому уравнению электроосаждение двух металлов легко осуществимо, если стандартные потенциалы и активности ионов, очень близки, близкие значения имеют также перенапряжение или катодная поляризация. В этом случае совместный разряд ионов возможен даже из растворов простых солей, как например, при получении никель-кобальтовых сплавов из сернокислых электролитов.
Графически эти закономерности для идеальных несопряженных систем представлены на рис. 65, где EМе1 и ЕМе2 потенциалы выделения первого и второго металлов, зависящие от стандартные потенциалов соответствующих металлов и активности их ионов в электролите.
Рис.65. Поляризационные кривые при совместном электроосаждении металлов Ме1 и Ме2:
EMe1 - Me1, EMe2 - Me2 - парциальные поляризационные кривые, характеризующие скорость разряда соответствующих ионов в зависимости от катодного потенциала. Отрезок бг - скорость разряда ионов металла Me1, вг - второго металла Мe2, аг - скорость осаждения сплава.
Если стандартные потенциалы металлов значительно отличаются друг от друга, то сблизить потенциалы их выделения можно соответствующим изменением перенапряжения и активности ионов. При увеличении или уменьшении активности одновалентных ионов в электролите в 10 раз равновесный потенциал сдвигается в отрицательную или положительную сторону всего лишь на 0.059 В, т.е. влияние изменения активности ионов в электролите значительно меньше разности стандартных потенциалов, обусловленных природой металла. Сближение потенциалов катионов металлов, различающихся величинами E°, переводом их в прочные комплексные соединения, позволяет осуществлять совместное их электроосаждение.
Для получения гальванических покрытий сплавами наиболее широкое применение получили электролиты с различными комплексными анионами: цианистые, станнатные, цинкатные, пирофоофатные и др. Используя для сближения потенциалов связывание катионов металлов в комплексные соединения, удалось получить, например, сплавы Cu - Zn, Zn - Cd, Fe - Ni - Co, Sn - Ni и др.
В последние годы получены сплавы хрома с металлами группы железа (Сr - Со, Сг - Ni , Cr - Fe, Fe - Ni - Cr) из электролитов, содержащих трехвалентные соединения хрома и различные комплексообразующие и блескообразующие добавки. Сплавы эти обладают ценными физико-механическими и физико - химическими свойствами: жаростойкостью, износостойкостью, коррозионное стойкостью и т.д. Значительный интерес представляет, например, сплав Ni - Cr - благодаря высокой жаро - и коррозионной стойкости. Совместное электроосаждение хрома и никеля затруднено существенным различием катодной плотности тока, необходимой для их выделения (20 - 100 А/дм2 для хрома и не более 5 А/дм2 для никеля). Для совместного электроосаждения никеля и хрома в сернокислый электролит вводят различные органические добавки, например, янтарную кислоту, моноэтаноламин и 1,4 - бутиндиол. В присутствии этих добавок осаждаются зеркально-блестящие коррозионно-стойкие электролитические покрытия.
Гальванопластика - это процесс получения металлических копий. Он состоит из нескольких этапов: 1) изготовление металлических или неметаллических форм, представляющих копию с оригинала; 2) нанесение токопроводящего слоя на неметаллические формы (механическое втирание графита в поверхность формы); 3) нанесение разделительного слоя, чтобы легче было отделить копию от металлической формы (слой окислов или солей, которые наносят химическим способом).
Форму, изготовленную специальным образом, помещают в электролитическую ванну и подключают к катоду. Аноды могут быть растворимые или нерастворимые. Электролиты в гальванопластике используют те же, что и в гальваностегии. Осаждение металла осуществляется на проводящий и разделительный слой. Металл осаждается либо на металлические формы, покрытые разделительным слоем, либо на неметаллические формы, покрытые проводящим слоем. Обычно первичное покрытие ведут без перемешивания при малых плотностях тока. После затягивания формы металлом в первой ванне, ее переносят во вторую.
Широкое применение электролиз нашел в металлургической промышленности для получения многих металлов. Так, например, электролизом расплавленных соединений получают щелочные и щелочноземельные металлы (алюминий, магний, натрий и др.). Электролизом также получают многие газообразные вещества - водород, кислород, хлор и др., органические соединения, металлические порошки.
За последние годы большое промышленное значение получили электрохимические методы обработки поверхности: электролитическое травление, электрополирование, анодирование, анодно-механическая обработка.
Электролитическое травление - это процесс удаление окислов с поверхности металлов при помощи электрического тока. При травлении происходит также выявление структуры основного металла. Электролитическое травление можно вести как на аноде, так и на катоде. Чаще других используется серная кислота. При катодном травлении на поверхности изделия выделяется водород: 2H+ + 2з = H2. Пузырьки водорода разрыхляют пленку окислов и удаляют ее. При катодном травлении возникает опасность наводороживания металла, поэтому катодное травление тонкостеных деталей не допускается.
При анодном травлении выделяется кислород, пузырьки которого механически удаляют окислы с поверхности металла.
Электрохимическое полирование также как и механическое полирование предназначено для сглаживания рельефа поверхности и улучшения внешнего вида изделия. Полирование осуществляется на аноде, а в качестве катодов используют металлы, химически стойкие в данном электролите. Например, для полирования меди применяют медные катоды, которые погружают в электролит, содержащий хромовый ангидрид и фосфорную кислоту. Вследствие разной толщины пленки происходит растворение металла на выступах. Поскольку электролит имеет большую вязкость, продукты анодного растворения накапливаются у поверхности, образуя прочную пленку. Электрод поляризуется, начинается окисление воды, выделяется кислород и одновременно происходит сглаживание поверхности.
Анодное оксидирование (анодирование) широко применяется для обработки металлов и, прежде всего алюминия. Алюминиевое изделие играет роль анода электролизера. Электролитом служит раствор серной, ортофосфорной, хромовой, борной или щавелевой кислот, катодом может быть металл, не взаимодействующий с раствором электролита, например нержавеющая сталь или свинец. На катоде выделяется водород, на аноде происходит образование оксида алюминия А12O3. Суммарный процесс на аноде можно представить следующим уравнением:
2Аl + ЗН2O - 6 = Аl2O3 + 6Н+
Механизм реакции имеет сложный характер. Электродная реакция протекает в несколько стадий. Наряду с образованием оксида происходит его частичное растворение в кислоте:
Аl2O3 + 6Н+= 2Аl3+ + ЗН2O
В результате пленка становится пористой, через поры пленки проникают ионы и процесс роста пленки продолжается. Полученная пленка Аl2O3 имеет ценные свойства. Она весьма пориста, причем размеры пор очень малы. Вследствие этого пленка может быть пропитана различными составами, повышающими коррозионную стойкость поверхности. Красители также могут придать поверхности разнообразную окраску, что используется при декоративной обработке алюминия и его сплавов.
Оксидная пленка на алюминии имеет высокую твердость, поэтому после анодирования и пропитки оксидного слоя смазкой значительно повышается износостойкость деталей. В растворах борной, щавелевой и лимонной кислот получаются тонкие плотные пленки с высоким электросопротивлением. Например, на алюминии формируются оксиды высокой чистоты с большим электросопротивлением (1014 Ом/см), поэтому окcидирование используется для получения изолирующих слоев на пленках, применяемых в электрических конденсаторах и других устройствах.
В последние годы пленки пористого анодного оксида алюминия нашли применение для создания наноструктур с высокой степенью упорядоченности. Пористый оксид алюминия (ПОА) используют в качестве селективных мембран, двухмерных фотонных кристаллов, матриц для получения нанотрубок.
Кроме алюминия производят также электрохимическое оксидирование магния, меди и титана, например, по реакции
Mg + 2Н2O > Mg (ОН)2 + 2Н+ + 2е
Электролиз нашел применение в различных отраслях в технике, причем области его использования непрерывно расширяются. Например, в последние годы разработаны электрохимические преобразователи информации и электрохромные устройства, в основе действия которых лежат законы электролиза.
Важнейшим техническим применением электролиза является электрохимическая анодная обработка металлов и сплавов. Для изменения размеров и формы, а также состояния поверхности металлических изделий используют электрохимические способы обработки, при которых производится электрохимическое фрезерование, шлифование, резка, сверление и др.
Анодная обработка изделий для придания им требуемой формы получила название электрохимической обработки металлов (ЭХОМ). Этот способ обработки металлов во многих случаях имеет важные достоинства, так как позволяет обрабатывать детали сложной конфигурации и металлы, которые механически или вообще не могут быть обработаны, или обрабатываются с большим трудом (например, очень твердые металлы и сплавы). Кроме того, струмент (катод) при этом не изнашивается, а обработка не влечет изменения структуры металла. К недостаткам ЭХОМ относится большой расход энергии, поэтому этот метод не применяется для обработки обычных металлов, сплавов и изделий простой конфигурации. Как и при обычном электролизе с растворимыми анодами, при ЭХОМ происходит анодное растворение металла: Мe - пе --> Мen+. На катоде, который при электрохимической обработке называют инструментом, обычно выделяется газообразный водород:
2Н+ + 2з = Н2.
Особенностью ЭХОМ по сравнению с другими методами электролиза является высокая скорость растворения металлов. Плотность тока при электрохимической обработке металлов в сотни и тысячи раз выше плотности тока других электрохимических процессов. Для обеспечения высоких скоростей процесса (высоких плотностей тока) при относительно невысоких напряжениях необходимо снизить омическое падение напряжение и поляризацию электродов. Для этого уменьшается зазор между электродами (до 0,1 мм) и используется раствор электролита с высокой электрической проводимостью. Для снижения поляризации и предотвращения пассивации анода необходимо принудительно с высокой скоростью выводить продукты анодного растворения металла из зазора между анодом и катодом. Электрохимически обрабатываемое изделие служит анодом и растворяется при прохождении тока (рис.66).
К отрицательному полюсу источника тока подключается катод (инструмент), обычно изготавливаемый из стали. На катоде выделяется водород. Между электродами сохраняется небольшой зазор, по мере растворения анода передвигают катод, чтобы сохранить малое расстояние между анодом и катодом. В зазор между электродами подается под давлением раствор электролита, в данной установке через полость в центре катода. Раствор электролита выносит из межэлектродного пространства продукты анодного растворения и газообразные продукты катодной реакции. Последние затем удаляются в атмосферу, а продукты растворения тем или иным способом выводятся из раствора электролита. В качестве растворов электролитов для обработки сталей и многих цветных металлов (никель, медь, кобальт, титан) и их сплавов применяется раствор NaCl; для обработки алюминия, цинка, олова и их сплавов -- раствор NaNО3, для обработки молибдена и вольфрама - раствор NaOH.
В настоящее время ЭХОМ используется для обработки лопаток турбин, штампов и пресс-форм, твердых и тугоплавких металлов и сплавов, получения и обработки отверстий и полостей для фрезерования, точения и шлифования различных изделий, заточки инструмента.
Рис. 66. Схема электрохимической обработки металлов:
1 - раствор электролита; 2 - катод (инструмент);
3 - анод (изделие)
Следует отметить, что области применения электролиза непрерывно расширяются. Например, в последние годы разработаны электрохимические преобразователи информации и электрохромные устройства, основу действия которых составляют законы электролиза.
Глава 10. КОРРОЗИЯ И ЗАЩИТА МЕТАЛЛОВ
10.1 Общие сведения о коррозии
Коррозией называется процесс самопроизвольного разрушения металлов в результате химического и физико-химического воздействия окружающей среды. Сущность коррозионных процессов сводится к переходу металлов в термодинамически более стабильные в определенных условиях продукты: оксиды, гидроксиды и др.
Коррозия является одним из самых разрушительных процессов природы. По мере развития техники происходило расширение видов и форм коррозии металлов и неметаллических материалов, увеличивались вызываемые ею потери. Причиной этого, с одной стороны, является быстро растущее количество изделий, устройств, машин и конструкций, с другой - возрастающее загрязнение окружающей среды (атмосферы, вод и почвы) продуктами сгорания угля и жидкого топлива, бытовыми и промышленными стоками, газовыми выбросами промышленных предприятий, химическими веществами, используемыми в быту, сельском хозяйстве и т.д.
Вред, наносимый коррозией, огромен. Только черных металлов разрушается до 10 % от выпускаемого количества. Однако ущерб определяется не только чистым весом разрушаемого металла, но и в значительно большей степени стоимостью тех конструкций, которые вышли из строя из-за подчас незначительного очага коррозии, а также стоимостью ремонта испорченного оборудования. В сумму ущерба от коррозии входит и стоимость всех мероприятий по борьбе с коррозией, включая применение многочисленных защитных покрытий (металлических, лакокрасочных и других), применение дефицитных и дорогостоящих конструкционных материалов и т.д.
10.2 Классификация коррозионных процессов
По механизму протекания процессов различают химическую и электрохимическую коррозию.
Химическая коррозия - процесс, протекающий за счет гетерогенной химической реакции, без разделения на отдельные стадии. Продукты коррозии образуются непосредственно на участке, подвергаемом коррозии. К ней относят коррозию газовую (например, окисление металла при нагреве) и коррозию в неэлектролитах. Примерами коррозии такого рода служат разрушение лопаток и других элементов турбин, находящихся в контакте с горячими топливными газами, коррозия резервуаров, коммуникаций и химических реакторов, вызванная действием таких газов, как H2S, H2, CO, Cl2, NH3, перегретый водяной пар или жидких неэлектролитов, например, нефти и продуктов ее переработки, расплавленной серы, органических соединений.
Электрохимическая коррозия возникает в растворах электролитов, причем ей сопутствуют протекающие на поверхности металла электрохимические процессы: окислительный - растворение металла и восстановительный - электрохимическое восстановление компонентов среды. На скорость электрохимической коррозии влияют особенности как самого металла (вид, структура, неоднородности, наличие пленок и покрытий), так и электролитической среды (состав, концентрация, температура, кислотность и т.д.). Влияют также условия эксплуатации металлической конструкции. Видами электрохимической коррозии являются: атмосферная, подземная, морская, биологическая, коррозия под действием блуждающих токов и др.
Атмосферной называется коррозия металла, находящегося в среде влажного воздуха.
Жидкостная коррозия протекает в электролитах, включая расплавленные соли. Выделяют морскую коррозию, являющейся следствием агрессивного действия морской среды - морской воды и атмосферы.
Подземная или грунтовая коррозия происходит из-за агрессивного действия почвы.
Электрокоррозия возникает под действием внешнего источника тока, например, коррозия под действием блуждающих токов, или коррозия (растворение) нерастворимого анода работающего электролизера.
Биологическая коррозия происходит в результате изменений в коррозионной среде вследствие деятельности микроорганизмов, например, бактерий или других живых организмов - водорослей, плесени, грибов.
По характеру разрушения коррозия делится на сплошную, или общую, и местную, или локальную (рис. 67)
Общая коррозия называется равномерной, если фронт коррозионного разрушения распространяется параллельно плоскости металла (рис. 67, а), и неравномерной, если скорость коррозии на различных участках неодинакова (рис. 67, б).
Примером общей коррозии является избирательная коррозия, которая характерна для сплавов - твердых растворов.
Местная коррозия имеет ряд разновидностей, среди которых распространены следующие: а) коррозия пятнами, в виде отдельных раковин; б) точечная, или питинговая, коррозия - разрушение в глубину металла с образованием пор, вплоть до сквозных; в) межкристаллитная коррозия - разрушение металла по границам кристаллитов; г) внутрикристаллитная коррозия - разрушение по зернам кристаллитов. Этот вид коррозии наблюдается при коррозионном растрескивании, протекающем под влиянием внешних механических нагрузок или внутренних напряжений.
Рис. 67: Виды коррозионного разрушения. а - сплошная равномерная коррозия; б - сплошная неравномерная коррозия; в - избирательная коррозия; г - неравномерная коррозия пятнами; д - неравномерная точечная коррозия; е - межкристаллитная коррозия; ж - внутрикристаллитная коррозия при коррозионном растрескивании под действием внешних сил F.
10.3 количественная и качественная оценка коррозии и коррозионной стойкости
Различают две характеристики для количественной оценки коррозии - коррозионные потери и скорость коррозии.
Коррозионные потери определяются как отношение потери массы к площади прокорродированной поверхности.
Скорость коррозии определяется изменением некоторого свойства и признака вещества за время протекания процесса коррозии. Как коррозионные потери, так и скорость коррозии могут изменяться во времени.
Ввиду разнообразия типов коррозионных разрушений невозможно установить единую для всех случаев меру скорости коррозии. Так, в случае сплошной коррозии скорость последней определяется как убыль массы вещества, отнесенная к единице поверхности за единицу времени, например, г/(м2•ч) или г/(м2·год). Скорость коррозии можно оценивать и по глубине разрушения вещества за единицу времени (например, линейная скорость коррозии чаще всего выражается в мм/год).
Способность вещества противостоять разрушающему воздействию определенной коррозионной среды называется коррозионной стойкостью.
Продуктами коррозии называется химические соединения, образующиеся в ходе процесса коррозии вследствие взаимодействия металла и коррозионной среды.
10.4 Химическая коррозия
Внешние факторы газовой коррозии. Газовая коррозия является частным случаем химической коррозии и возможна только в условиях, исключающих протекание электрохимических процессов. Характерной особенностью газовой коррозии является отсутствие на поверхности металла влаги. Поэтому в большинстве случаев речь идет о коррозии при повышенной температуре, при которой вода находится в газовой фазе. Однако, исходя из определения, можно представить себе газовую коррозию и при комнатной температуре, но в условиях высокой степени сухости, естественной или создаваемой искусственно. Так, при осушении силикагелем до точки росы - 30 °С влагоемкость воздуха составит 0,333 г/м3. При + 20 °С это соответствует влажности воздуха всего лишь 2 %. В таких условиях протекание электрохимической коррозии практически исключается. В промышленности случаи газовой коррозии встречаются достаточно часто - от разрушения деталей, нагревательных печей до коррозии металла в процессе его термической обработки.
На скорость газовой коррозии влияет целый ряд факторов, и прежде всего такие, как температура и состав газовой среды.
Повышение температуры заметно увеличивает скорость коррозии. В первом приближении эта связь может быть описана известным из физической химии уравнением Аррениуса
ln K = A -
где К - скорость реакции; А и В - константы; Т - абсолютная температура (°К).
Из уравнения следует, что логарифм скорости коррозии линейно связан с величиной, обратной абсолютной температуре. Эта зависимость в некоторых случаях (например, для меди в интервале температуры 700 - 900 °С) полностью подтверждается, но чаще она носит более сложный характер, что связано с влиянием вторичных реакций, природой и свойствами продуктов коррозии и др.
В среде чистого воздуха коррозия сводится к взаимодействию металла с кислородом. Железо уже при температуре 300 °С покрывается на воздухе окалиной, т. е. окисной пленкой, различимой невооруженным глазом. В состав окалины входит магнетит F3O4 и гематит Fe2O3. С ростом температуры, вплоть до 575 °С, скорость коррозии остается примерно постоянной, но, начиная с 575 0С, резко увеличивается. Этот факт связывают с появлением на границе металл - окалина вюстита (окиси железа FеО).
На поверхности углеродистой стали в процессе коррозии параллельно протекают две группы реакций: окисление железа до окислов с образованием окалины и реакции обезуглероживания c участием карбида железа (цементита) по следующему уравнению:
Fe3C + O2 > 3Fe + CO2.
Таким образом, поверхностный слой металла обедняется цементитом. При длительном нагреве глубина обезуглероженного слоя может составлять несколько миллиметров. Это заметно влияет на свойства металла, и прежде всего на его твердость и прочность. Обезуглероживание наблюдается и при наличии в газовой среде углекислого газа, паров воды или других окислителей и протекает по аналогичным реакциям:
Fe3C + СО2 > 3Fе + 2СО,
Fe3C + Н2O > 3Fe + СО + Н2.
Повышение давления газа при прочих равных условиях также сильно ускоряет газовую коррозию.
Специфично влияет на коррозионную стойкость стали водород, вызывая при повышенной температуре и давлении так называемую водородную хрупкость, т. е. резкое снижение прочности. Водородная хрупкость объясняется не только обезуглероживанием стали за счет восстановления цементита водородом, но и такими явлениями, как молизация атомарного водорода, находящегося в кристаллической решетке стали, и образование по границам зерен металла паров воды и метана. Каждый из процессов приводит к генерированию газа, создающего в замкнутом объеме металла колоссальное давление. Это в свою очередь вызывает появление многочисленных микротрещин, понижающих прочность металла.
Газовой коррозии сильно подвержены и многие цветные металлы, хотя каждый из них относится к тем или иным газам поразному. Это можно проиллюстрировать данными табл. 2, в которой скорость коррозии металлов для наглядности дана в относительных единицах, при этом скорость коррозии железа в кислороде принята за 100.
Табл. 9 убедительно демонстрирует влияние природы металла на скорость коррозии. Например, если при переходе от кислорода к парам воды коррозия вольфрама замедляется примерно в 20 раз, а меди - в 3,5 раза, то скорость коррозии железа при этом, наоборот, увеличивается.
Таблица 9 Газовая коррозия ряда металлов в некоторых средах (температура 800 °С, продолжительность 24 ч)
Металл |
О2 |
Н2O |
СО2 |
|
Железо |
100 |
122 |
115 |
|
Медь |
23,4 |
6,5 |
12,7 |
|
Никель |
1,9 |
0,06 |
0,8 |
|
Вольфрам |
80 |
4,1 |
27,2 |
Окисные пленки. Существенное влияние на скорость газовой коррозии оказывают образующиеся продукты коррозии, их физико - химические и механические свойства. В большинстве случаев коррозия протекает в окислительной среде; при этом на поверхности металла в качестве продукта коррозии образуется окисная пленка. Впрочем, тонкая окисная пленка на металле обычно появляется уже при комнатной температуре. Свойства образующейся окисной пленки решающим образом влияют на дальнейший ход коррозионного процесса. В случае резкого торможения процесса вплоть до полного прекращения коррозии говорят о наступившей пассивности поверхности металла.
Термодинамика газовой коррозии. Термодинамическая возможность процесса газовой коррозии с образованием окисной пленки определяется величиной изменения свободной энергии системы. Существует удобная форма определения термодинамической возможности протекания коррозии за счет окисления металла, которая сводится к сравнению упругости диссоциации полученного продукта реакции окисления с парциальным давлением кислорода в газовой фазе.
Действительно, если парциальное давление кислорода РO и упругость диссоциации окисла РMeO в реакции окисления металла mМе + nO2 МеmO2n будут равны, то реакция будет находиться в равновесии. Если РO> РMeO, то реакция протекает слева направо в сторону образования окисла. Если РO< РMeO, то окисел самопроизвольно диссоциирует на кислород и металл. Поэтому сравнение упругости диссоциации данного окисла при данной температуре, например, с парциальным давлением кислорода воздуха (РO 0,2 ат при атмосферном давлении) позволяет найти границу термодинамической вероятности процесса окисления металла на воздухе. Так, судя по данным табл. 10, серебро уже при 400 °К не способно окисляться. Для меди эта граница лежит в области 2000 °К.
Таблица 10 Упругость диссоциации окислов серебра и меди в зависимости от температуры
Процесс |
300 0К |
400 0К |
500 0К |
800 0К |
12000К |
16000К |
|
Ag2O 2Ag + O2 |
8,4 • 10-5 |
6,9 • 10-1 |
249 |
- |
- |
- |
|
Cu2O 2Cu + O2 |
- |
- |
0,56 • 10-30 |
3,7 • 10-16 |
2 • 10-8 |
1,8 • 10-4 |
Свойства окисных пленок. В зависимости от условий образования окисные пленки могут иметь толщину от мономолекулярной до нескольких миллиметров. Различаются тонкие, средние и толстые пленки. Тонкие пленки имеют толщину от нескольких ангстрем до 400 Е. Они невидимы и могут быть обнаружены и измерены так называемым оптическим методом отражения поляризованного света.
Средние пленки имеют толщину 400 - 5000 Е и видны невооруженным глазом благодаря возникновению цветов побежалости (явление интерференции света, известное из физики). Их толщина может быть измерена различными методами, среди которых наиболее доступные гравиметрический (весовой) и электрометрический (метод катодного восстановления).
Пленки толщиной выше 5000 Е (т. е. толще 0,5 мк) определяются весовым методом или методом катодного восстановления, а также с помощью микроскопа, микрометра или других аналогичных мерительных инструментов. Обычно они легко обнаруживаются невооруженным глазом.
Следует отметить, что при изучении фазового состава и структуры окисных пленок широко используются электронно-микроскопический, электронно-графический и рентгенографический методы исследования.
В табл. 11 даны примеры окисных пленок на железе. Обращает на себя внимание четкая зависимость толщины пленки от условий ее образования, а также сам диапазон толщины - от 15 Е до 0,6 мм.
Было бы ошибочным считать, что чем толще окисная пленка, тем она надежнее защищает металл от коррозии. В действительности дело обстоит скорее наоборот, а именно лучшими защитными свойствами обладают тонкие пленки. Однако толщина пленки, строго говоря, не является все же критерием защитной способности.
Чтобы окисная пленка обладала защитными свойствами, она должна быть прежде всего сплошной, беспористой. Условие сплошности окисной пленки было сформулировано Пиллингом и Бедворсом: если объем окисла металла меньше, чем объем металла, из которого пленка образовалась, то пленка образуется несплошной; если объем окисла металла больше, чем объем металла, то пленка может быть беспористой, компактной.
Сказанное можно пояснить следующими неравенствами:
< 1 пленка не может быть сплошной; при > 1 пленка может быть сплошной.
В свою очередь
VMe = и VMeO = ,
где А - атомный вес металла (т. е. рассматривается грамм - атом металла); - плотность металла; М - молекулярный вес окиси металла; n - число атомов металла в молекуле окиси; D - плотность окиси.
Таблица 11 Толщина окисной пленки на железе в зависимости от условий
Условия образования пленки |
Толщина пленки, A |
Категория пленки |
Цвета побежалости |
|
Сухой воздух при 20 °С |
15 - 25 |
Тонкая |
- |
|
Нагревание на воздухе при 400 °С в течение: 1 минуты 2 минут 3 минут |
460 580 720 |
} Средние |
Желтый Красный Синий |
|
Нагревание на воздухе при 900 °С в течение 7 суток |
0,6 мм |
Толстая |
- |
Условие сплошности является необходимым и существенным, но не единственным для характеристики защитных свойств окисной пленки. При слишком больших значениях VМеO / VМе плёнка испытывает столь высокие внутренние напряжения, что разрушается, теряя сплошность. Например, при отношении VWO / VW = 3,35 окисная пленка вольфрама имеет весьма слабые защитные свойства.
Пленка должна иметь хорошее сцепление с металлом, должна быть достаточно прочной и эластичной. Коэффициенты теплового расширения пленки и металла должны быть достаточно близки. Наконец, пленка должна быть химически стойкой в условиях воздействия на нее коррозионной среды.
Важным условием является и необходимость ориентационного соответствия образующейся пленки металлу. Сущность ориентационного соответствия сводится к требованию максимального сходства кристаллических решеток металла и образующегося окисла при минимальном смещении атомов. Чаще всего при наличии кристаллической структуры окисла, близкой структуре металла, защитные свойства такой пленки лучше, чем неориентированного по отношению к металлу окисла.
Законы роста окисных пленок. Если в результате коррозии образуется несплошная окисная пленка, кислород получает свободный доступ к поверхности металла. В этом случае скорость коррозии должна быть величиной постоянной:
= к,
где y - толщина окисной пленки. После интегрирования получим уравнение
y = k + А,
выражающее линейную зависимость толщины пленки от времени. Постоянная А указывает на наличие некоторой окисной пленки к моменту начала окисления (у = А при = 0). Как следует из уравнения, скорость роста пленки в этом случае не зависит от ее толщины. Коррозия может протекать с постоянной скоростью вплоть до полного превращения металла в окисел, как это имеет место при окислении магния в среде кислорода.
Однако нередко фактическая скорость окисления, сохраняя постоянство, оказывается ниже теоретической скорости химической реакции окисления металла. Это несоответствие объясняется наличием на границе раздела металл - окисел металла тончайшей, вплоть до нескольких мономолекулярных слоев, сплошной пленки псевдоморфного окисла. Псевдоморфный окисел обладает высокой степенью ориентационного соответствия металлу и является, таким образом, своеобразным кристаллографическим продолжением решетки окисляемого металла, отличаясь в то же время по параметрам от решетки окисла металла. Будучи беспористым, он затрудняет проникновение кислорода к поверхности металла. Таким образом, даже в случае образования на металле толстой и рыхлой окисной пленки скорость коррозии в конечном итоге будет лимитироваться не скоростью реакции окисления, а скоростью диффузии кислорода сквозь компактный псевдоморфный окисел.
Если в процессе коррозии образуется окисел, обладающий достаточно хорошими защитными свойствами, то скорость коррозии будет зависеть от соотношения скоростей взаимной диффузии сквозь пленку атомов кислорода к поверхности металла и атомов металла к поверхности раздела фаз окисел - газ. Можно показать, что в этом случае по мере роста толщины пленки скорость коррозии будет замедляться по уравнению
=
После интегрирования и объединения констант получаем параболическую зависимость толщины окисной пленки от продолжительности коррозии:
y2 = k + А.
Такая зависимость наблюдается при окислении меди, никеля, вольфрама. Имея параболическую кривую зависимости коррозии от времени, можно определить скорость коррозии в любой точке кривой. Она будет выражаться как тангенс угла наклона касательной, проходящей через данную точку, так как
tg = .
Наконец, в некоторых условиях торможение скорости окисления металла с ростом толщины окисной пленки происходит более интенсивно, чем этого требует параболический закон. В этих случаях скорость окисления связана с толщиной пленки экспоненциальной зависимостью
=
После интегрирования приходим к логарифмическому уравнению
у = ln (k).
Логарифмический закон роста пленки имеет экспериментальное подтверждение при окислении на воздухе алюминия и цинка в интервале температуры 20 - 255 °C, меди - до 100 °С, железа до 385 °С.
Важно подчеркнуть, что закономерности роста пленки на металле могут меняться в зависимости от условий. Так, окисление железа при температуре ниже 385 °С подчиняется логарифмическому закону, в области выше этой температуры и до 1000 °С - параболическому, а при давлении кислорода ниже 1 мм рт. ст. и температуре 700 - 950 °С - линейному.
Разрушение пленок. В процессе роста окисной пленки в ней возникают значительные внутренние напряжения. Поэтому, если образующаяся пленка недостаточно прочна или имеет слабое сцепление с металлом, или слишком неэластична, или по другим причинам, затронутым выше (например, различие коэффициентов температурного расширения металла и пленки), она разрушается. Характер разрушения связан с причиной, вызвавшей его. Если прочность пленки велика, а сцепление с металлом недостаточно хорошее, образуются пузыри. Крупные пузыри приводят обычно к разрывам (рис. 68, а), и защитные
Рис 68. Виды разрушения окисных пленок.
а - пузырь с разрывом; б - микропузыри в слое окисла (вакуумная пористость); в - отслаивание; г - растрескивание при сдвиге; д - растрескивание на углах и ребрах.
свойства пленки резко снижаются. В других случаях образуются мелкие пузыри в слое окисла (рис. 68, б), и тогда защитные свойства пленки могут даже возрасти, так как подобная «вакуумная пористость» препятствует диффузии реагирующих атомов или ионов и таким образом тормозит процесс коррозии. Может наблюдаться отслаивание окисла (рис. 68, в), а также растрескивание на поверхности (рис. 68, г) или на углах и ребрах (рис. 68, д).
Методы защиты от газовой коррозии. Основной метод защиты от газовой коррозии сводится к применению легированных сплавов, обладающих так называемой жаростойкостью. Для снижения скорости окисления железа при 900 °С вдвое достаточно ввести 3,5 % алюминия, а вчетверо - около 5,5 %. Концентрация легирующего компонента может быть ничтожной. Так, расплавленный магний настолько энергично окисляется на воздухе, что способен самовозгораться. Однако при введении всего лишь 0,001 % бериллия скорость окисления магния резко снижается.
Действие легирующих элементов объясняется образованием на поверхности металла защитных пленок. Они или образуются только из легирующего компонента, или состоят из смешанных окислов легирующего компонента и основного металла. Наилучшими защитными свойствами обладают окислы типа шпинелей. Шпинельная структура окисла характеризуется высокой степенью компактности ионов в решетке и практическим отсутствием вакантных узлов; это и обусловливает их высокую термодинамическую стабильность. Примером шпинелей являются окислы FeO • Сr2О3 на поверхности хромистой стали или NiO • Сr2О3 на поверхности хромо - никелевой стали.
Второй метод борьбы с газовой коррозией - применение защитной атмосферы. В зависимости от природы металла газовая среда не должна содержать окислителей (для стали) или, наоборот, восстановителей (для меди). В ряде случаев применяются инертные газы - азот, аргон. На практике этот метод встречается только в специальных случаях: при термообработке и сварке. Так, отжиг стали проводят в атмосфере, содержащей смесь азота, водорода и окиси углерода. Сварка алюминиево-магниевых и титановых деталей протекает успешно в атмосфере аргона.
Третий метод снижения скорости газовой коррозии - защита поверхности металла специальными жаростойкими покрытиями. В одних случаях поверхность, например стальной детали покрывают термодиффузионным способом сплавом железо - алюминий или железо - хром. Оба сплава обладают высокими защитными свойствами, а сам процесс называется соответственно алитированием и термохромированием. В других случаях поверхность защищают слоем кермета - смесью металла с окислами. Керамико - металлические покрытия (керметы) интересны тем, что сочетают тугоплавкость, твердость и жаростойкость керамики с пластичностью и проводимостью металла. В качестве неметаллической составляющей используют тугоплавкие окислы Al2O3, MgO и соединения - типа карбидов и нитридов. Металлическим компонентом служат металлы группы железа, а также хром, вольфрам, молибден.
10.5 Электрохимическая коррозия
Электрохимическая коррозия металла может проявиться в тех случаях, когда имеет место граница раздела фаз металл-электролит. Факт проявления коррозии не зависит от природы электролита, будь это сверхчистая вода или расплавленная соль. Не имеет существенного значения и количество электролита - в предельном случае это может быть пленка влаги толщиной в несколько десятков миллимикрон.
Схема процесса коррозии. Анодный процесс при коррозии всегда заключается в ионизации металла. Металл переходит в раствор в виде гидратированных ионов, при этом в металле остается соответствующее число электронов.
Примерами анодных реакций могут быть:
Fe - 2з = Fe2+ - окисление железа
Al - 3з = Al3+ - окисление алюминия
В общей форме реакция выглядит так:
Me - nз = Men+, где Me - металл.
Катодный процесс - поглощение появившихся в металле избыточных электронов с помощью так называемых деполяризаторов, которыми могут являться атомы, молекулы, ионы раствора, подвергающиеся восстановлению на всей поверхности металла или отдельных ее участках.
Примерами катодных реакций могут быть следующие:
2Н+ + 2з > 2Н > Н2 - восстановление ионов водорода в кислой среде.
О2 + 4Н+ + 4з > 2Н2О - восстановление растворенного кислорода в кислой среде.
О2+2Н2О + 4з > 4ОН- - восстановление растворенного кислорода в нейтральной или щелочной среде.
В общей форме уравнение катодной реакции выглядит так:
D + з > D, где D - деполяризатор.
Поляризация и ее виды. Коррозия металлов с кислородной и водородной деполяризацией. При прохождении через электрод электрического тока извне происходит смещение его потенциала. Численная величина изменения потенциала вследствие прохождения тока называется поляризацией.
Причина возникновения поляризации состоит в том, что переход зарядов из металла в раствор и перемещение ионов в электролите встречают определенное сопротивление. В зависимости от вызывающих его факторов различают три вида поляризации: концентрационную, активационную и оммическую.
Причиной концентрационной поляризации является разность концентраций ионов в приэлектродном пространстве, следствием чего является изменение потенциала электрода.
Возникновение активационной поляризации обусловлено сопротивлением, возникающим во время катодной реакции присоединения электронов деполяризатором или торможением
при переходе катионов из металлической решетки в раствор. В электрохимии эти процессы называют стадиями, считается, что самая замедленная стадия определяет скорость процесса. Преодоление такого сопротивления требует добавочной активационной энергии, поэтому и поляризация называется активационной.
Омической поляризацией называется падение потенциала JR, вызываемое электрическим сопротивлением слоя электролита вблизи электрода или слоя продуктов реакции, а также обоих этих слоев одновременно.
В зависимости от направления сдвига потенциала электрода при прохождении постоянного тока различает анодную и катодную поляризации. Анодной поляризацией называется сдвиг потенциала в положительную сторону, катодной поляризацией - его перемещение в отрицательную сторону.
На практике всегда стремятся к увеличению поляризации в коррозионном элементе. Благодаря поляризации металлов скорость коррозии уменьшается в сотни, а то и в тысячи раз.
...Подобные документы
Технологии получения углеродных нанотрубок. Использование их в эмиссионной электронике. Создание токопроводящих соединений, сверхбыстрых транзисторов на основе атомов углерода. Производство наноэлектронных приборов. Электрические свойства нанотрубки.
презентация [557,0 K], добавлен 24.05.2014Роль полупроводников в микро- и оптоэлектронике. Классификация полупроводниковых материалов. Диапазон электрических параметров различных полупроводников. Особые физико-химические свойства кремния. Применение германия в полупроводниковых приборах.
контрольная работа [1,0 M], добавлен 15.12.2015- Исследование нелинейно-оптических процессов в неоднородных средах на основе пористых полупроводников
Кремний как материал современной электроники. Способы получения пористых полупроводников на примере кремния. Анализ процесса формирования, методов исследования, линейных и нелинейных процессов в неоднородных средах на основе пористых полупроводников.
дипломная работа [6,3 M], добавлен 18.07.2014 Структура полупроводниковых материалов. Энергетические уровни и зоны. Электро- и примесная проводимость полупроводников. Виды движения носителей. Свойства электронно-дырочного перехода. Электропроводимость полупроводников в сильных электрических полях.
реферат [211,5 K], добавлен 29.06.2015Классификация, температурные зависимости концентрации, подвижностей носителей заряда собственных и примесных полупроводников. Общая характеристика и основные сведения о кристаллическом строении полупроводниковых материалов Si и Ge, методика выращивания.
курсовая работа [1,5 M], добавлен 08.05.2009Полупроводники и их физические свойства. Генерация и рекомбинация свободных носителей заряда. Влияние донорных и акцепторных примесей. Понятие р-п -перехода и факторы, влияющие на его свойства. Полупроводниковые диоды и биполярные транзисторы, их виды.
контрольная работа [1,2 M], добавлен 19.03.2011Общие сведения о сегнетоэлектриках, диэлектрические свойства и электропроводность, линейные и нелинейные свойства. Сегнетоэлектрики и антисегнетоэлектрики, области спонтанной поляризации (доменов). Направления применения сегнетоэлектрических кристаллов.
курсовая работа [10,0 M], добавлен 29.07.2009Общие сведения о графене - двумерной аллотропной модификации углерода, история его открытия, структура, псевдомагнитные свойства. Получение нового полупроводникового материала на основе графена. Один из способов создания графенового двоичного триггера.
доклад [3,8 M], добавлен 20.05.2013Общие сведения о резисторах, классификация, система условных обозначений и маркировка. Основные электрические параметры и свойства резисторов. Характеристики и свойства переменных и постоянных резисторов, назначение и использование резисторных наборов.
реферат [33,4 K], добавлен 30.08.2010Принципы работы полупроводниковых приборов. Физические основы электроники. Примесная электропроводность полупроводников. Подключение внешнего источника напряжения к переходу. Назначение выпрямительных диодов. Физические процессы в транзисторе, тиристоры.
лекция [4,4 M], добавлен 24.01.2014Отличия энергетических диаграмм проводников, полупроводников и диэлектриков. Принцип работы биполярного транзистора. Фотодиод: принцип работы, параметры и назначение. Определение параметров биполярных транзисторов, включенных но схеме с обидим эмиттером.
контрольная работа [1,4 M], добавлен 05.07.2014Понятие и общая характеристика приборов - излучателей или приемников электромагнитных волн. Описание детекторных радиоприемников, принципы работы диода и триода. Устройство транзистора, свойства полупроводников, особенности возникновения p-n перехода.
реферат [85,4 K], добавлен 17.03.2011Макромир, микромир, наномир, мир элементарных частиц: основные положения квантовой теории; свойства микро- и наночастиц. Основы микроскопии в электронике. История создания технологических микрообъектов. Наноэлектронные элементы информационных систем.
курсовая работа [1,7 M], добавлен 15.06.2013Начало использования полупроводников 1940-50-е годы. Появление и использование первых интегральных схем. Появление БИС микропроцессоров в 1970-е годы. Распространение архитектуры intel. Развитие технологий литорафии. Усложнение техпроцесса в 2000-е годы.
реферат [84,0 K], добавлен 22.03.2015Строение твердых тел, их энергетические уровни. Оптические и электрические свойства полупроводников. Физические эффекты в твердых и газообразных диэлектриках, проводниках, магнитных и полупроводниковых материалах. Токи в электронно-дырочном переходе.
курс лекций [1,7 M], добавлен 11.01.2013Электрофизические свойства полупроводниковых материалов, их применение для изготовления полупроводниковых приборов и устройств микроэлектроники. Основы зонной теории твердого тела. Энергетические зоны полупроводников. Физические основы наноэлектроники.
курсовая работа [3,1 M], добавлен 28.03.2016Электропроводимость полупроводников. Образование электронно-дырочной проводимости и ее свойства. Условное обозначение полупроводниковых приборов, классификация и основные параметры. Биполярные и МОП транзисторы. Светоизлучающие приборы и оптопары.
лекция [1,8 M], добавлен 17.02.2011Метод для исследования СВЧ диэлектриков при повышенных температурах. Характеристика волноводного, резонаторного и оптического методов. Пути разработки функциональной, принципиальной схемы измерительной установки и вопросов конструирования и технологии.
дипломная работа [655,4 K], добавлен 03.03.2011Криоэлектроника (криогенная электроника) – направление электроники и микроэлектроники, охватывающее исследование взаимодействия электромагнитного поля с электронами в твердых телах при криогенных температурах и создание электронных приборов на их основе.
реферат [124,3 K], добавлен 30.12.2008Этапы развития информационной электроники. Усилители электрических сигналов. Развитие полупроводниковой информационной техники. Интегральные логические и аналоговые микросхемы. Электронные автоматы с памятью. Микропроцессоры и микроконтроллеры.
реферат [1,0 M], добавлен 27.10.2011