Радиотехника и электроника

Учение о строении атомов и молекул. Сведения о полиморфных превращениях углерода, о наноуглеродных трубках и способах их получения. Свойства растворов неэлектролитов и электролитов. Физико-химические свойства металлов, полупроводников и диэлектриков.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид учебное пособие
Язык русский
Дата добавления 19.08.2017
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Aмp = - Д G

Так как Aэp = Aэр, то получим

Е = - Д G / nF

Для реакции, протекающей в элементе Даниэля - Якоби

Zn + CuSO4 = ZnSO4 + Cu

Изменение свободной энергии в стандартных условиях равно -51,85 ккал (-216946 Дж); подставляя эту величину получим:

Е = - 1,1 В.

Эта величина совпадает с ЭДС, вычисленной по разности стандартных потенциала меди и цинка.

Таким образом, главный критерий возможности самопроизвольного течения реакции в данном направлении - положительное значение вычисленной ЭДС соответствующего элемента.

Прямым измерением разности потенциалов на клеммах гальванического элемента при помощи обычного вольтметра можно получить значение напряжения U, которое не равно ЭДС элемента: U < ЭДС, что обусловлено падением напряжения внутри элемента и другими эффектами. Поэтому измерение ЭДС обычно проводят компенсационным методом, при котором сила тока, протекающего через элемент, близка к нулю. Для этого к элементу подводят ЭДС с противоположным знаком от внешнего источника тока, значение которой можно регулировать тем или иным способом. В измерительную цепь включают также гальванометр для регистрации тока и вольтметр для измерения напряжения. В момент, когда выходное напряжение внешнего источника тока равно ЭДС гальванического элемента (момент компенсации ЭДС), сила тока в цепи равна нулю (стрелка гальванометра не отклоняется). Измеренное в этот момент напряжение на клеммах гальванического элемента равно его ЭДС. Менее точный метод измерения ЭДС может быть использован с помощью высокоомного вольтметра, при измерении которым мала сила тока, протекающего через элемент, поэтому невелика разница между ЭДС и напряжением элемента.

9.3 Стандартный водородный электрод

ЭДС элемента равна разности равновесных потенциалов катода и анода. Если потенциал одного из электродов принять равным нулю, то относительный потенциал Е второго элемента будет равен ЭДС элемента. Таким образом, можно определить относительный потенциал любого электрода. В настоящее время известны лишь относительные электродные потенциалы. За нуль принят потенциал стандартного водородного электрода.

Водородный электрод представляет собой Рt - пластинку, покрытую тонким слоем очень рыхлой пористой платины для увеличения её поверхности. Пластинка опускается в 2 н. водный раствор H2SO4 (рис. 62). Активность ионов водорода в таком растворе равна 1 г - ион/л. Через раствор пропускается химически чистый водород под атмосферным давлением. Водород насыщает поверхность Pt - пластины, часть его переходит в атомарное состояние H2 2H и на границе электрода с раствором устанавливается равновесие Н -Н+ + з или + + 2з - Н2.

Водородный электрод условно обозначают Н2 / 2Н+, где вертикальная черта обозначает поверхность раздела фаз.

Если давление водорода в газовой среде, соприкасающейся с раствором равно 1 атм, активность ионов Н+ в растворе равна 1 г - ион/л , то потенциал такого электрода условно принимается за 0 В и его в этом случае называют нормальным (стандартным) водородным электродом.

Для определения потенциалов электродов по водородной шкале собирают гальванический элемент, одним из электродов

Рис. 62. Схема водородного электрода

которого является измеряемый, а вторым стандартный водородный электрод. Схему такого элемента записывают следующим образом: слева - водородный электрод, справа - измеряемый электрод. Например, схема гальванического элемента для измерения потенциала цинкового электрода имеет вид:

Н2, Pt |H+| |Zn2+| Zn,

а схема для измерения потенциала медного электрода:

H2, Pt |H+| |Cu2+| Cu.

Поскольку потенциал водородного электрода условно принят за нуль, то измеряемая величина ЭДС элемента будет равна потенциалу электрода.

9.4 Поляризационные явления в гальванических элементах

ЭДС работающего элемента с течением времени уменьшается. Причиной этого является поляризация электродов. Поляризация - смещение величины электродного потенциала от его равновесного значения при прохождении тока.

Д E = Еi - Ep

где Д Е - поляризация; Еi - потенциал электрода при прохождении тока; Ep - равновесный потенциал. В элементе Даниэля - Якоби с растворением цинкового электрода накапливаются ионы Zn2+ в приэлектродном слое. В уравнении Нернста связь потенциала с концентрацией имеет вид:

E= E + lg [Zn2+]; при [Zn2+] = 1 г - ион / л

Е = Е0 = -0,76 В.

Если концентрация увеличилась в 100 раз, то:

E= -0,76 + lg 102 = - 0,702 В

Это приводит к повышению потенциала цинка. Таким образом, при анодной поляризации потенциал смещается в положительную сторону.

У медного электрода концентрация катионов меди Cu2+ уменьшается в результате их восстановления и потенциал меди понижается:

E= 0,34 + lg 10 -2 = 0,282 В

При катодной поляризации потенциал катода смещается в отрицательную сторону.

В результате уменьшается ЭДС элемента

ЭДС = 0,282 В - 0,702 В = 0,984 В (< 1,1 В)

Изменение величины потенциала электрода по сравнению с исходным равновесным значением, вызванное изменением концентрации потенциалопределяющих ионов в растворе, называется концентрационной поляризацией. Этот вид поляризации наблюдается и в элементе Вольта

Zn |H2SO4| Cu

Электродные реакции в элементе Вольта

А: Zn = Zn2+ + 2з

K: 2H+ + 2з = H2

При протекании тока в этом элементе происходит концентрационная поляризация отрицательного электрода, вызванная растворением цинка, а также химическая поляризация медного электрода. Поляризация называется химической в том случае, когда она вызывается изменением химической природы электрода. Так, в элементе Вольта поверхность медного электрода насыщается водородом и образуется "водородный электрод", потенциал которого более низкий, чем потенциал медного электрода.

Поляризация может быть обусловлена и замедленной кинетикой электрохимической реакции окисления и восстановления. Как правило, при работе элемента падение напряжения вызывается рядом причин.

При использовании гальванического элемента, как источника тока, большое значение приобретает процесс устранения поляризации - так называемая деполяризация. Перемешивание раствора уменьшает концентрационную поляризацию. Химическую поляризацию можно устранить, вводя в электролит специальные вещества (деполяризаторы), вступающие в реакцию с продуктами, обуславливающими поляризацию.

Например, поляризация, вызываемая выделением водорода, снижается под действием специально добавленных окислителей (К2Cr2O7, O2, KMnO4 и др.)

2KMnO4 + 5H2 + 3H2SO4 > 2MnSO4 + K2SO4 + 8H2O

В результате этой реакции поверхность катода очищается от водорода и ЭДС возрастает.

9.5 Химические источники тока

Для своих нужд в настоящее время человечество использует в основном химическую энергию ископаемого вещества. Химическая энергия превращается в электрическую на паротурбинных тепловых электростанциях и в механическую энергию в двигателях внутреннего сгорания, используемых на транспорте. Т.е. производство электроэнергии станциями, работающими на угле, природном газе, бензине или других подходящих носителях энергии, осуществляется по следующей, ставшей уже классической схеме: химическая энергия топлива - тепловая энергия - энергия движения, электроэнергия. При современных способах преобразования химической энергии топливо используется неэффективно: к.п.д. двигателей внутреннего сгорания и электростанций составляет 15 - 40 %. Если бы удалось преобразовывать химическую энергию в электрическую, минуя промежуточные стадии, был бы получен значительный выигрыш как в материалах, так и в энергии. Кроме того, паротурбинные установки и двигатели внутреннего сгорания не могут быть использованы во многих областях техники, например: в системах, работающих в космосе и под водой, в портативных устройствах. Существенным недостатком тепловых электростанций и двигателей внутреннего сгорания является то, что они дают большое число вредных выбросов, загрязняют окружающую атмосферу. В связи с этим ведутся поиски новых методов преобразования энергии.

Одним из наиболее перспективных является электрохимический способ преобразования химической энергии в электрическую, которая осуществляется в химических источниках тока. К ним относятся: гальванические элементы, аккумуляторы и топливные элементы. Достоинством их является высокий к.п.д., бесшумность, безвредность, возможность использовать в космосе и под водой, в переносных устройствах на транспорте и т.п.

Гальванические первичные элементы. Гальваническими первичными элементами называют устройство для прямого преобразования химической энергии заключенных в них реагентов в электрическую энергию. Реагенты входят непосредственно в состав гальванического элемента и расходуются в процессе его работы. После расхода реагентов элемент не может больше работать. Таким образом, это источник тока одноразового действия, поэтому его еще называют первичным химическим источником тока. Гальванический элемент характеризуется ЭДС, напряжением, емкостью и энергией, которую он может отдать во внешнюю цепь.

Напряжение элемента U меньше ЭДС из-за поляризации электродов и омических потерь.

U = E - I (r1 + r2) - Д E,

где Е - ЭДС элемента; I - сила тока; r1 и r2 - сопротивление проводников первого и второго рода внутри элемента; Д Е - поляризация элемента, равная сумме катодной и анодной поляризаций:

Д Е = Д Ек + Д Еа

В свою очередь катодная и анодная поляризация является суммой концентрационной и электрохимической поляризаций анода и катода.

Поляризация возрастает с увеличением плотности тока. Кроме того, при увеличении плотности тока растет омическое падение напряжения. Таким образом, при увеличении плотности тока напряжение элемента падает.

Емкость элемента - это количество электричества, которое источник тока отдает при разряде. Она определяется количеством запасенных в элементе реагентов, их эквивалентом и степенью превращения. Если элемент разряжается при постоянной силе тока I, то емкость практически определяют по уравнению

CI = I • ф,

где CI - емкость при постоянной силе тока, А; ф - время разряда элемента.

Если элемент разряжается при постоянном внешнем сопротивлении R, то емкость имеет вид:

CR = =

Если элемент разряжается при постоянной силе тока I, то энергию элемента определяют по уравнению

A= I IU

и если элемент разряжается при постоянном внешнем сопротивлении R, то по уравнению:

А =,

где А и А - энергия элемента, которую он отдает во внешнюю цепь, соответственно при постоянной силе тока I или постоянном внешнем сопротивлении R; U - среднее напряжение при разряде элемента.

Важной характеристикой элемента служит удельная энергия, т.е. энергия, отнесенная к единице массы или объема элемента. Так как при увеличении силы тока напряжение элемента падает, то энергия элемента, и удельная энергия также падают. Более высокую удельную энергию можно получить в элементах с большим значением ЭДС, малой поляризацией, малыми значениями электрохимических эквивалентов. В качестве анодов обычно применяют электроды из цинка и магния; катодов - электроды из окислов металлов (марганца, меди, ртути, серебра) и хлоридов (меди и свинца) на графите, а также кислородный электрод.

Широко применяется для питания радиоаппаратуры, аппаратуры связи, магнитофонов, карманных фонарей.

Марганцево - цинковый элемент. Анодом в элементе служит цинковый электрод, катодом - электрод из смеси диоксида марганца с графитом, токоотводом служит графит. В качестве электролита используется паста, состоящая из раствора хлорида алюминия с добавкой муки или крахмала (загустители). Схема элемента: Zn MnO, C

На аноде происходит анодное окисление цинка, на катоде Mn (IV) восстанавливается до Mn (III). Суммарное уравнение токообразующей реакции: Zn + 2NHCl + 2MnO = Cl

Элемент имеет напряжение 1,4 1,6 В, удельную энергию 10 - 50 Вт•ч/кг. В элементах с такими же реагентами, но со щелочным электролитом (КОН) получают более высокую удельную энергию 20 - 80 Вт•ч/кг. Если требуется высокая сохранность в рабочем состоянии, постоянное напряжение и высокая удельная энергия на единицу объема, используют ртутно-цинковые элементы: Zn HgO, C

Напряжение элемента 1,0 - 1,3 В, удельная энергия 50 - 130 Вт•ч/кг. Элементы применяются в портативных радиоприемниках и передатчиках, слуховых аппаратах, кардиостимуляторах.

Напряжение можно увеличить при использовании анодов из магния. Однако такие аноды в водных растворах подвергаются коррозии. Коррозию можно предотвратить применением неводных растворов электролитов, в которых устойчивы даже щелочные металлы. В последние годы разработаны элементы с литиевыми анодами, неводными растворами электролитов (тетрагидрофуран и др.) и катодными материалами на основе оксида марганца, оксида или сульфида или фторида меди (Cu) и др. Такие элементы характеризуются высоким разрядным напряжением (2,0 - 3,0 В) и удельной энергией (200 - 500 Вт • ч/кг).

9.6 Аккумуляторы

Это устройства, в которых электрическая энергия превращается в химическую, а химическая - снова в электрическую. В аккумуляторах под воздействием внешнего источника тока накапливается (аккумулируется) химическая энергия, которая затем переходит в электрическую. Процессы накопления химической энергии получили название заряда аккумуляторов, процессы превращения химической энергии в электрическую - разряда аккумулятора. При заряде аккумулятор работает как электролизер, при разряде - как гальванический элемент.

В процессе разряда и заряда изменяется состав активных масс аккумулятора и соответственно Э.Д.С и напряжение. Разрядное напряжение уменьшается, а зарядное напряжение возрастает во времени.

В настоящее время наиболее распространенными являются свинцовые аккумуляторы, в которых в качестве электролита используется раствор H2SO4 (32-39 %, d = 1,24 - 1,30 г/см3), поэтому они еще называются кислотными. Состоит он из решетчатых свинцовых пластин, погруженных в H2SO4. Решетки вначале заполняются оксидом свинца, который при взаимодействии с H2SO4 превращается в PbSO4. Пластины, содержащие губчатый свинец служат анодами (-), а диоксид свинца - катодами (+).

При разряде аккумулятора в нем протекают окислительно-восстановительные реакции:

Анод: Pb + SO- 2 e PbSO - окисление

Катод: PbO + SO+ 4H + 2з PbSO4+ 2HO -

- восстановление.

Электроны, отдаваемые металлическим свинцом Рb принимаются PbО при восстановлении. Электроны по внешней цепи передаются от Pb к PbО

2

Pb |HSO| PbО

Суммарная реакция в аккумуляторе:

Pb + PbO + 4H++ 2SO = 2PbSO + 2HO

Значение ЭДС аккумулятора равно разности потенциалов электродов и рассчитывается по уравнению:

E = EPbO / PbSO - EPbSO/ Pb = E+ln,

где E= E/- E/ = 1,68 B - (-0,36) B = 2,04 B.

При заряде:

Анод: PbSO + 2 e Pb + SO

Катод: PbSO - 2 e + 2HO PbO + SO+ 4H

Суммарная реакция:

2 PbSO + 2HO Pb + PbO + 4H+2 SO

В результате заряда активная масса одного электрода превращается из PbSO в Pb, а активная масса второго электрода из PbSO в PbO.

При заряде напряжение выше ЭДС и растет в течение заряда. В конце заряда напряжение достигает значения достаточного для электролиза воды и тогда начинается выделение водорода и кислорода:

2H + 2 e H; HO - 2 e O + 2H

В конце заряда происходит только электролиз воды («кипит»).

При разряде аккумулятора процессы идут в обратном направлении, при этом падает его ЭДС и напряжение. Однако, при напряжении ниже 1,7 В (пл. HSO 1,17 г/см3) происходит быстрое и необратимое падение напряжения. На электродах образуется неактивная пленка PbSO, изолирующая активную массу от электролита. Поэтому ниже, чем 1,7 В разряд производить не следует.

Свинцовый аккумулятор обладает существенными достоинствами: высоким к.п.д. (около 80 %), высокой Э.Д.С. и относительно малым ее изменением при разряде, простотой и невысокой ценой.

Недостатки: невысокая удельная энергия (20 - 30 Вт•ч/кг), саморазряд аккумулятора при хранении и малый срок службы (2 - 5 лет). Свинцовые аккумуляторы широко используются на электростанциях, телефонных узлах, на железных дорогах, подводных лодках, самолетах, автомобилях, электрокарах и других устройствах.

Кроме кислотных широко применяются и щелочные аккумуляторы. Наиболее распространенные из них никель-кадмиевые и никель - железные аккумуляторы. Положительный электрод содержит гидрооксид никеля, отрицательный электрод - оответственно кадмий или железо. Электролит - 20 - 23,0 % раствор КОН. Суммарные реакции можно записать:

NiOOH + Cd + 2HONi (OH)+ Cd (OH);

E = 1,45 B

NiOOH + Fe + 2HO Ni (OH)+ Fe (OH);

E = 1,48 B

К достоинствам относится большой срок службы (до 10 лет).

К недостаткам: невысокие к.п.д (60 - 65 %) и Э.Д.С.

Для электромобилей разрабатываются различные аккумуляторы. У свинцовых - из-за малой удельной энергии - малый пробег 60 км. Никель - цинковые - удельная энергия 50 Вт•ч/кг - 150 км.

9.7 Топливные элементы

Разновидностью гальванического элемента является топливный элемент, режим работы которого в отличие от гальванического элемента - непрерывный, так как топливо и окислитель в топливный элемент подаются непрерывно по мере их расходования, а продукты реакции непрерывно отводятся.

Принципиальная схема водородно-кислородного элемента представлена на рис. 63. Топливо окисляется на аноде, отдавая электроны.

2H + 4OH- 4 e = 4HO

Окислитель принимает их на катоде и восстанавливается:

O + 2HO + 4 e = 4OH.

Рис. 63. Схема кислородно-водородного топливного элемента

Между анодом и катодом возникает разность потенциалов.

При замыкании внешней цепи электроны перемещаются по ней от анода к катоду, при этом напряжение элемента может достигать от 0,7 до 0,9 В. Общее управление химической реакции в топливном элементе:

H+OHO

Отработанный пар отводится.

Анод - пористый никелево- керамический сплав с включениями никелевой пыли; катод - пористый никелево - керамический сплав с включениями серебряной пыли.

В зависимости от области рабочих температур различают низкотемпературные (до 150 °С), среднетемпературные (170 - 430 °С) и высокотемпературные (500 - 1100 °С) топливные элементы. Давление, при котором находятся рабочие вещества, может быть в пределах 1 - 100 бар. В качестве электролитов используют кислотные и щелочные растворы или ионообменные мембраны (в низкотемпературных элементах), жидкости, расплавы или пасты (в области средних T и p), щелочно - карбонатные расплавы или твердые ионопроводящие материалы (при высоких рабочих температурах).

Для большего повышения скорости реакции на пористые электроды наносят каталитически активные благородные металлы, в частности Pt и Pd. Несмотря на это, проблема электродов удовлетворительно решена только для водородно-кислородных топливных элементов.

В отличие от гальванических элементов топливные элементы не могут работать без вспомогательных устройств. Для увеличения напряжения и тока элементы соединяют батареи. Система, состоящая из батарей топливных элементов, устройств для подвода топлива и окислителя, вывода из элементов продуктов реакции, поддержания и регулирования температуры, получила название электрохимического генератора. К настоящему времени созданы электрохимические генераторы, мощностью от десятков ватт до тысячи киловатт. Удельная энергия их выше удельной энергии гальванических элементов. Наиболее разработаны кислородно-водородные генераторы, которые уже применяются на космических кораблях. Они обеспечивают космический корабль и космонавтов не только электроэнергией, но и водой, которая является продуктом горения в топливном элементе.

9.8 Теоретические основы электролиза

Электролизом называют совокупность окислительно-восстановительных процессов, которые происходят под действием электрического тока, подаваемого от внешнего источника, на электродах, погруженных в расплав или раствор электролита. При электролизе происходит превращение электрической энергии в химическую. Под действием поля движение ионов в электролите становится направленным. Отрицательные частицы (анионы) перемещаются к аноду (А), который

подключен к положительному полюсу источника тока. На аноде протекает реакция окисления. Положительно заряженные ионы направляются к катоду (К), подключенному к отрицательному полюсу источника тока. На катоде протекает реакция восстановления. Для осуществления электролиза используют источник электрического тока, электролизер, в который помещают расплав или раствор электролита и электроды. В большинстве случаев применяются металлические электроды, но иногда могут быть использованы и неметаллические, проводящие электрический ток (например, графитовые).

В качестве примера рассмотрим электролиз расплава хлорида натрия. При прохождении тока через расплав катионы натрия Na+ под действием сил электрического поля движутся к катоду, минусу (-). Здесь, взаимодействуя с приходящими по внешней цепи электронами, они восстанавливаются:

Na+ + з = Na

Анионы хлора, перемещаясь к аноду и теряя электроны окисляются:

l- - 2з = Cl2

Таким образом, в процессе электролиза протекает окислительно-восстановительная реакция, но не самопроизвольно, как в гальваническом элементе, а за счет энергии электрического тока, подводимого извне.

Рассмотрим условия, необходимые для протекания электролиза. В результате работы внешнего источника тока на катоде возникает избыток электронов. Поэтому катод выступает в роли восстановителя по отношению к разряжающимся на нем частицам. Напротив, анод проявляет функции окислителя.

Таким образом, для того чтобы на катоде стал возможным разряд какого-либо вещества необходимо повышать на

пряжение на электролизере до тех пор, пока потенциал катода не станет меньше окислительно-восстановительного потенциала разряжающегося вещества:

Ek < E(Ox/Red , (1)

где Ek - потенциал катода; E(Ox/Red)к потенциал разряжающегося вещества.

В анодном процессе соотношение потенциалов электрода и разряжающегося вещества обратное:

Ea > E(Ox/Red (2)

где Ea - потенциал анода; E(Ox/Red)а - потенциал разряжающегося вещества, Ox - окисленная форма вещества; Red - восстановленная форма вещества.

Скорость электродных процессов. Обеспечение только необходимых условий (1) и (2) не всегда является достаточным для того, чтобы электродный процесс проходил с требуемой скоростью. Экспериментально установлено, что скорость электродной реакции зависит от природы разряжающихся частиц, их концентрации и скорости их диффузии; от материала электрода, состояния его поверхности и что особенно важно, от величины потенциала электрода. Зависимость скорости катодного и анодного процессов i от потенциала E представлена на рис. 64.

(3)

где I - сила тока в электрической цепи; Sк - площадь поверхности катода.

Рис.64. Поляризация электродов при электролизе

I - поляризация анода, 2 - поляризация катода

Скорость, например, анодного процесса определяется значением плотности тока iА

На этом рисунке точками А и К обозначены равновесные потенциалы веществ, разряжающихся на катоде и аноде. Стрелками указано направление изменения катодного и анодного потенциалов при увеличении напряжения на электролизере.

Из рис. 8 видно, что скорость восстановления катионов увеличивается по мере смещения потенциала катода в область отрицательных значений. Скорость же анодного процесса возрастает при смещении потенциала анода в область положительных значений.

Процесс разряда каких-либо веществ на катоде или аноде становится принципиально возможным лишь после того, как

потенциалы электродов приобретут значения К или А соответственно. Однако для того, чтобы реакция разряда происходила с заданной скоростью iх, потенциал катода должен быть смещен на величину зк, а потенциал анода на величину за от равновесных значений. Указанные смещения потенциалов требуют дополнительного увеличения напряжения на электролизере. Поэтому их обычно называют катодным к) и анодным а) перенапряжением. Следует отметить, что явление изменения потенциалов электродов, т.е. возникновения поляризации обусловлено целым рядом причин. Причиной поляризации электродов является замедленность какой-либо стадии электродного процесса. Любой электродный процесс представляет собой сложную гетерогенную реакции, состоящую из ряда последовательных стадий. Например, при восстановлении ионов металла на катоде возможны следующие стадии: доставка ионов металла к поверхности электрода, дегидратация ионов в двойном электрическом слое, адсорбция ионов на поверхности электрода, разряд ионов, стадия внедрения атомов металла в кристаллическую решетку. Каждая из этих стадий может быть замедленной. Если на электроде протекает только одна реакция, то вместе термина "поляризация" применяют термин "перенапряжение" (з).

Электрохимическое перенапряжение при выделении металла на катоде, как правило, невелико. Так, для меди приблизительно равно десяткам милливольт, а такие металлы, как ртуть, серебро, олово и свинец выделяют из водных растворах их солей выделяются почти без перенапряжения. Наибольшие значения з достигает при выделении металлов группы железа.

Если замедлена химическая реакция в растворе электролита, то говорят о химическом перенапряжении. Может быть замедлена стадия построения или разрушения кристаллической решетки, тогда имеется фазовое перенапряжение.

В общем случае реальный потенциал Еi электрода, через который пропускается ток определяется выражением:

E(i) = Eравн(Ме)+? ц (4)

где Eравн(Ме) - равновесный потенциал электрода, ? ц -сверхпотенциал, включает в себя различного вида поляризации электрода.

Для того чтобы мог происходить электролиз и через электролизер проходил ток надо приложить определенное напряжение U, которое слагается из разности равновесных потенциалов ? E (ЭДС) перенапряжения катода и анода, а также омического падения напряжения в проводниках IR:

U = ? E+ за+ зk+IR (5)

Из уравнения (5) видно, что напряжение может быть снижено уменьшением поляризации электродов и омического сопротивления.

Поляризация (концентрационная и электрохимическая) может быть снижена увеличением поверхности электродов, температуры, концентрации реагентов, перемешиванием, уменьшением силы тока.

Рассмотрим схему электролиза раствора хлороводорода с платиновыми нерастворимыми анодами и определим ? E:

НСl = Н+ + Cl-

катод: 2 Н+ + 2 = H2; = 0,0 В

анод: 2 Сl- - 2 = Cl2; = 1,36 В

где и - стандартные окислительно-восстановительные потенциалы с концентрацией ионов в растворе 1 г - ион/л.

Один из электродов в электролизере является водородным, а другой - хлорным. Таким образом, разность потенциалов двух указанных электродов будет равна:

- = 1,36 - 0,0 = 1,36 В.

Очевидно, эту ЭДС и надо преодолеть против направленной в противоположную сторону эдс от внешнего источника электричества.

Перенапряжение водорода. При рассмотрении электролиза растворов нельзя упускать из вида, что, кроме электролита, в растворе имеется еще ионы Н+ и ОН-, являющиеся продуктом диссоциации воды. Поэтому для электролиза водных растворов большой интерес представляет скорость процесса:

++ 2 = Н2 ( = 0,0 В).

Выделение водорода на катоде происходит при потенциале более отрицательном, чем равновесный потенциал, зависящий от рН раствора электролита:

=+ ln- з;

=+0,059 lg- з, т.к. рН = - lg [H+], то

= -0,059 pH - з

где - это дополнительное напряжение, требующееся для разряда катионов водорода.

Процесс восстановления Н+ - многостадийный процесс и в общем виде может быть представлен следующими стадиями:

1) процесс дегидратации ионов гидроксония 3O)+;

2) адсорбция Н+ на поверхности катода;

3) электрохимическая стадия Н+ + = Н;

4) стадия образования молекулы водорода +>H2;

5) образование пузырьков газа nH2>H2(n);

6) отрыв пузырьков газа от катода.

Причина водородного перенапряжения заключается в возможном торможении той или иной стадии этого процесса. Величина зависит от плотности тока, природы металла, состояния поверхности катода. Эта зависимость выражается уравнением Тафеля:

= a+b lg i

где a и b - константы

Константа «а» зависит от природы металла и состояния его поверхности. Так, например, при i = 1 А/дм2 величина «а» имеет следующие значения для различных металлов:

Pt - 0,1 В, Zn - 1,24 В

Fe - 0,7 В, Pb - 1,56 В

Константа «в « зависит от температуры раствора и при 20 °С для всех металлов составляет величину около 0,12 В.

Таким образом, водородное перенапряжение зависит от плотности тока, природы металла, кислотности электролита (рН), температуры, состояния поверхности электрода.

9.9 Последовательность электродных процессов

При наличии нескольких видов ионов или недиссоциированных молекул электрохимически активных веществ возможно протекание нескольких электродных реакций. Рассмотрим последовательность их протекания на катоде и аноде.

Катодный процесс. Поскольку на катоде протекает реакция восстановления, поэтому прежде всего выделяются металлы, обладающие более положительным потенциалом.

Для катодного восстановления при электролизе водного раствора электролита все окислители можно разделить на три группы:

1. Ионы металлов, потенциал которых значительно отрицательнее, чем на катоде не восстанавливаются. К ним относятся ионы щелочных, щелочноземельных металлов и других, стоящих в ряду напряжений до алюминия включительно. При этом в кислых растворах (рН < 7) на катоде восстанавливаются катионы водорода:

++ 2з = Н2 ,

а в нейтральных и щелочных (рН ? 7) - молекулы воды

2O + 2 з = Н2 +2OH-

2. Если EMe мало отличается от EH, то возможно совместное выделение металла и водорода. Так, происходит выделение свинца, олова, никеля, кобальта, хрома, кадмия, цинка и других металлов, находящихся в ряду напряжений между алюминием и водородом. Существенную роль в последовательности разряда ионов металлов играет перенапряжение водорода. Например, при электролизе водного раствора ZnSO4 при стандартных условиях на катоде должен протекать процесс восстановления катионов водорода (= 0 В), а затем цинка (= -0,76 В). Но так как зн велико и на цинке составляет 0,7 В, то потенциалы водорода и цинка обличаются и происходит их совместное выделение. При этом большая часть тока расходуется на выделение цинка.

3. При любых плотностях тока EMe > EH. В этом случае будет происходить выделение только металла. На этом основано выделение меди, серебра, золота, платины и др. Например, при электролизе водного раствора хлорида меди на катоде идет только реакция:

Cu2+ + 2=Cu°.

Анодный процесс. На аноде окисляются в первую очередь вещества, имеющие наиболее отрицательный потенциал. Различают электролиз с растворимыми и нерастворимыми (инертными) анодами. В первом случае возможен процесс Me-nз>Men+, если ЕMe имеет более отрицательное значение, чем потенциал других ионов или веществ. При электролизе с инертным анодом можно выделить следующие случаи:

а) растворение металлов

Me - nз>Men+

б) окисление ионов OH-

2OH-- 2з>O2+ H2O

в) окисление других веществ, присутствующих в растворе или около электрода:

Redn- - nз = Ox0

Если потенциал металлического анода имеет отрицательнее потенциала ионов OH- или других веществ, присутствующих в растворе, в газовой фазе около электрода или не электроде, то происходит растворение металла. При этом протекает электролиз с растворимым анодом. Так, например, происходит электролиз сульфата меди с медным анодом:

Катод: Cu2+ + 2з>Cu°

Анод: Cu - 2з>Cu2+

Если потенциал металлического анода близок к потен-

циалу других электродных процессов, то наряду с растворением металла на аноде протекают также другие процессы, например, разряд ионов OH-.

Если потенциал металла или другого проводника первого рода, используемого в качестве анода, имеет более положительное значение, то протекает электролиз с нерастворимым анодом. В качестве анода применяются графит, золото, платина, диоксид свинца и другие. Некоторые металлы практически не растворяются из-за высокой анодной поляризации, например, никель, железо в щелочном растворе, свинец в H2SO4, титан, тантал, нержавеющая сталь. Явление торможения анодного растворения металла пассивацией.

Потенциал кислородного электрода в широкой области рН отрицательнее потенциалов галоидных ионов (за исключением иона I-). Однако при наличии в растворе ионов галогенов вследствие высокой поляризации выделения кислорода в первую очередь на аноде выделяется йод, затем бром. При наличии Cl- - ионов в растворе и малых значениях анодной плотности тока ia идёт выделение кислорода, а при высоких ia параллельно начинает выделяться хлор. Фтор из-за положительного значения потенциала не может быть выделен из водных растворов, его получают электролизом расплавленных фторидов. На аноде не окисляется также ионы SO42-, PO43-, NO3-, т.е. содержащие кислород.

Законы Фарадея. Электролиз подчиняется законам Фарадея.

1. Массы веществ (g), выделившихся на электродах при электролизе, прямо пропорциональны количеству электричества, прошедшего через электролит, т.е.:

g = kQ

где k - коэффициент пропорциональности численно равный электрохимическому эквиваленту , Q - количество электричества; Q = I М ф (I - сила тока, ф - длительность электролиза)

2. Равные количества электричества образуют при электролизе различных соединений эквивалентные количества вещества. При пропускании одного фарадея электричества (F) выделяется 1 г - эквивалент вещества, например, элемента

Э = А/n,

где А - атомная масса элемента; n - валентность элемента

Об эффективности процессов на электродах судят по выходу вещества по току (А):

где mпрак - масса выделившегося при электролизе вещества; mтеор - масса вещества теоретически рассчитанная по закону Фарадея при заданных I и ф.

9.10 Техническое применение электролиза

Электролиз нашёл широкое и разнообразное применение в технике. Одной из важнейших областей является гидроэлектрометаллургия, которая подразделяется на две категории: электролитическое рафинирование и электроэкстракцию.

Электролитическое рафинирование - это процесс очистки металлов и одновременного извлечения ценных компонентов из металлов, полученных металлургическим путем. При электролитическом рафинировании металл, который необходимо очистить от примесных элементов, используют в качестве анодов. При прохождении тока через раствор металл подвергается анодному растворению, а ионы металла восстанавливаются на катоде и образуют осадок чистого металла. Содержащиеся в аноде примеси либо переходят в электролит (откуда периодически удаляются), либо остаются нерастворенными и выпадают в виде анодного шлама.

В качестве примера можно рассмотреть электрорафинирование меди. Основным компонентом раствора служит CuSO4 - распространенная и дешёвая соль. Для увеличения электропроводимости раствора в него добавляют H2SO4. Кроме того, в раствор вводят небольшие количества добавок для получения плотного компактного осадка. Анодами служит черновая медь, полученная в результате металлургических процессов. Катода - тонкие листы электролитной меди.

При прохождении тока (ia = 300 А/дм2) медь и примеси с более отрицательным электродным потенциалом (Fe, Co, Zn) анодно растворяется. Примеси накапливаются в электролите в виде сульфатов. Примеси благородных металлов (Au, Ag) выпадают в осадок, образуя анодный шлам, который затем извлекается и перерабатывается.

Схема электролиза:

Анод: Cu - 2з = Cu2+ (Fe - з = Fe2+ , Zn - 2з= Zn2+)

Катод: Сu2+ + 2з= Cu0

Процесс ведется при перемешивании, чтобы восстановление не сопровождалось большим перенапряжением, а следовательно большим расходом электроэнергии.

В настоящее время ведутся работы по усовершенствованию процесса электрорафинирования, который заключается в наращивании катодного осадка на бесконечной ленте, продвигающейся через электролизёр с электролитом. Метод электролитического рафинирования широко применяется для получения чистых металлов Ni, Pb, Sn, Zn, Mn, Ag, Au.

Электроэкстракция. Это извлечение металлов из их смеси методом электролиза. В этом случае руду подвергают выщелачиванию, т.е. растворяют в определенном растворителе. Раствор, содержащий извлекаемый металл, после очистки от примесей направляют на электролиз с нерастворимыми анодами, часто свинцовыми. Электролиз ведется при интенсивном перемешивании, чтобы обеспечить доставку разряжающихся ионов к катоду. Отличие от электрорафинирования заключается в том, что электролит содержит меньшую концентрацию ионов, а это приводит к большей катодной поляризации.

Например, при электроэкстракции меди из разбавленных сернокислых электролитов протекают следующие процессы:

На катоде: Cu2+ + 2з = Cu

На аноде: Pb - 2з + SO42 - = PbSO4

PbSO4 + 2H2O - 2з = PbO2 + 4H+ + SO42-

Образующийся осадок сульфата свинца осаждается на поверхности свинцового анода, его потенциал становиться положительнее и создаются условия для выделения кислорода.

Метод электроэкстракции широко применяется при извлечении из обедненных растворов никеля, кобальта, марганца, хрома, меди, серебра, золота и других металлов.

Достоинством гидроэлектрометаллургических методов является возможность переработки бедных руд и извлечения побочных продуктов, высокая чистота получаемого основного металла.

Другой важнейшей областью применения электролиза является гальванотехника, которая включает два различных направления: гальваностегию и гальванопластику.

Гальваностегия - это процесс нанесения металлических покрытий на поверхность изделий электролизом. Хорошо

очищенную и обезжиренную деталь погружают в ратвор электролита, содержащий ионы того металла, которым ее необходимо покрыть и присоединяют в качестве катода к цепи постоянного тока. Электролиз ведут как с растворимыми, так и нерастворимыми анодами.

Из многочисленных применяемых в технике гальванотехнических процессов важнейшими являются хромирование, цинкование, никелирование, кадмирование, лужение, меднение, серебрение, золочение и др.

Гальванопокрытия разделяются на защитные, зашитно-декоративные и специальные. Защитные покрытия, например цинковые, кадмиевые, оловянные наносятся для защиты изделий от коррозии. Защитно-декоративные покрытия предназначены не только для защиты от коррозии, но и для улучшения внешнего вида (никелевые, хромовые, медные, серебряные, золотые). Специальные покрытия используют для улучшения различных физико-механических и физико-химических свойств (оловянные, медные, серебряные, золотые и др.). В последние десятилетия все более широкое применение в качестве специальных покрытий находят гальванические сплавы.

Рассмотрим примеры получения некоторых гальванопокрытий.

Хромирование. Хромирование получило широкое применение в промышленности при изготовлении таких изделий, как измерительный и режущий инструменты, валы, оси, цилиндры двигателей, лопатки водяных и паровых турбин и т.д. Широко применяется электролитическое хромирование для защиты от коррозии и с целью декоративной отделки поверхности изделий.

Электролитические осадки хрома можно получать из растворов как трех -, так и шестивалентных соединений хрома. В настоящее время применяют пока шестивалентные соединения хрома - раствор хромовых кислот, которых металл находится в основном в виде комплексных анионов СrО4 2-, HCrO4-, Сr2O72-.

Электроосаждение хрома из раствора хромовой кислоты является одним из наиболее сложных процессов в гальваностегии. Он имеет ряд отличительных особенностей по сравнению с выделением многих других металлов: высокий отрицательный потенциал восстановления хромат - ионов, низкий выход по току хрома (15 - 30 % в зависимости от катодной плотности тока ik и длительности электролиза ф), высокие плотности тока, обязательное присутствие в растворе некоторых посторонних анионов, необходимость применения нерастворимых анодов, очень низкая рассеивающая способность электролита.

Чрезвычайная сложность явлений, сопровождающих процесс хромирования, не позволяет пока признать вопрос о механизме решенным однозначно. Однако предположение о непосредственном восстановлении Сr6+ до Сr° представляется экспериментально более обоснованным. Восстановление хрома можно представить уравнением:

CrO42- + 8H+ + 6з = 2Cr0 + 4H2O

...

Подобные документы

  • Технологии получения углеродных нанотрубок. Использование их в эмиссионной электронике. Создание токопроводящих соединений, сверхбыстрых транзисторов на основе атомов углерода. Производство наноэлектронных приборов. Электрические свойства нанотрубки.

    презентация [557,0 K], добавлен 24.05.2014

  • Роль полупроводников в микро- и оптоэлектронике. Классификация полупроводниковых материалов. Диапазон электрических параметров различных полупроводников. Особые физико-химические свойства кремния. Применение германия в полупроводниковых приборах.

    контрольная работа [1,0 M], добавлен 15.12.2015

  • Кремний как материал современной электроники. Способы получения пористых полупроводников на примере кремния. Анализ процесса формирования, методов исследования, линейных и нелинейных процессов в неоднородных средах на основе пористых полупроводников.

    дипломная работа [6,3 M], добавлен 18.07.2014

  • Структура полупроводниковых материалов. Энергетические уровни и зоны. Электро- и примесная проводимость полупроводников. Виды движения носителей. Свойства электронно-дырочного перехода. Электропроводимость полупроводников в сильных электрических полях.

    реферат [211,5 K], добавлен 29.06.2015

  • Классификация, температурные зависимости концентрации, подвижностей носителей заряда собственных и примесных полупроводников. Общая характеристика и основные сведения о кристаллическом строении полупроводниковых материалов Si и Ge, методика выращивания.

    курсовая работа [1,5 M], добавлен 08.05.2009

  • Полупроводники и их физические свойства. Генерация и рекомбинация свободных носителей заряда. Влияние донорных и акцепторных примесей. Понятие р-п -перехода и факторы, влияющие на его свойства. Полупроводниковые диоды и биполярные транзисторы, их виды.

    контрольная работа [1,2 M], добавлен 19.03.2011

  • Общие сведения о сегнетоэлектриках, диэлектрические свойства и электропроводность, линейные и нелинейные свойства. Сегнетоэлектрики и антисегнетоэлектрики, области спонтанной поляризации (доменов). Направления применения сегнетоэлектрических кристаллов.

    курсовая работа [10,0 M], добавлен 29.07.2009

  • Общие сведения о графене - двумерной аллотропной модификации углерода, история его открытия, структура, псевдомагнитные свойства. Получение нового полупроводникового материала на основе графена. Один из способов создания графенового двоичного триггера.

    доклад [3,8 M], добавлен 20.05.2013

  • Общие сведения о резисторах, классификация, система условных обозначений и маркировка. Основные электрические параметры и свойства резисторов. Характеристики и свойства переменных и постоянных резисторов, назначение и использование резисторных наборов.

    реферат [33,4 K], добавлен 30.08.2010

  • Принципы работы полупроводниковых приборов. Физические основы электроники. Примесная электропроводность полупроводников. Подключение внешнего источника напряжения к переходу. Назначение выпрямительных диодов. Физические процессы в транзисторе, тиристоры.

    лекция [4,4 M], добавлен 24.01.2014

  • Отличия энергетических диаграмм проводников, полупроводников и диэлектриков. Принцип работы биполярного транзистора. Фотодиод: принцип работы, параметры и назначение. Определение параметров биполярных транзисторов, включенных но схеме с обидим эмиттером.

    контрольная работа [1,4 M], добавлен 05.07.2014

  • Понятие и общая характеристика приборов - излучателей или приемников электромагнитных волн. Описание детекторных радиоприемников, принципы работы диода и триода. Устройство транзистора, свойства полупроводников, особенности возникновения p-n перехода.

    реферат [85,4 K], добавлен 17.03.2011

  • Макромир, микромир, наномир, мир элементарных частиц: основные положения квантовой теории; свойства микро- и наночастиц. Основы микроскопии в электронике. История создания технологических микрообъектов. Наноэлектронные элементы информационных систем.

    курсовая работа [1,7 M], добавлен 15.06.2013

  • Начало использования полупроводников 1940-50-е годы. Появление и использование первых интегральных схем. Появление БИС микропроцессоров в 1970-е годы. Распространение архитектуры intel. Развитие технологий литорафии. Усложнение техпроцесса в 2000-е годы.

    реферат [84,0 K], добавлен 22.03.2015

  • Строение твердых тел, их энергетические уровни. Оптические и электрические свойства полупроводников. Физические эффекты в твердых и газообразных диэлектриках, проводниках, магнитных и полупроводниковых материалах. Токи в электронно-дырочном переходе.

    курс лекций [1,7 M], добавлен 11.01.2013

  • Электрофизические свойства полупроводниковых материалов, их применение для изготовления полупроводниковых приборов и устройств микроэлектроники. Основы зонной теории твердого тела. Энергетические зоны полупроводников. Физические основы наноэлектроники.

    курсовая работа [3,1 M], добавлен 28.03.2016

  • Электропроводимость полупроводников. Образование электронно-дырочной проводимости и ее свойства. Условное обозначение полупроводниковых приборов, классификация и основные параметры. Биполярные и МОП транзисторы. Светоизлучающие приборы и оптопары.

    лекция [1,8 M], добавлен 17.02.2011

  • Метод для исследования СВЧ диэлектриков при повышенных температурах. Характеристика волноводного, резонаторного и оптического методов. Пути разработки функциональной, принципиальной схемы измерительной установки и вопросов конструирования и технологии.

    дипломная работа [655,4 K], добавлен 03.03.2011

  • Криоэлектроника (криогенная электроника) – направление электроники и микроэлектроники, охватывающее исследование взаимодействия электромагнитного поля с электронами в твердых телах при криогенных температурах и создание электронных приборов на их основе.

    реферат [124,3 K], добавлен 30.12.2008

  • Этапы развития информационной электроники. Усилители электрических сигналов. Развитие полупроводниковой информационной техники. Интегральные логические и аналоговые микросхемы. Электронные автоматы с памятью. Микропроцессоры и микроконтроллеры.

    реферат [1,0 M], добавлен 27.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.