Радиотехника и электроника

Учение о строении атомов и молекул. Сведения о полиморфных превращениях углерода, о наноуглеродных трубках и способах их получения. Свойства растворов неэлектролитов и электролитов. Физико-химические свойства металлов, полупроводников и диэлектриков.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид учебное пособие
Язык русский
Дата добавления 19.08.2017
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

а) свободные атомы металлов всех семейств (s-, р-, d- и f) и металлы в конденсированном состоянии;

б) элементы в форме существования с наиболее отрицательным окислительным числом.

Проявление свободными металлами только восстановительных свойств объясняется способностью их атомов терять полностью или частично валентные электроны. Свободные атомы металлов способны отдавать столько электронов (максимально) каков номер группы. Na+1; Са+2; Мп+7.

Восстановительная активность металлов проявляется по-разному. Мерой её для свободных атомов металлов является потенциал ионизации (I), а в водных растворах - электродный потенциал (Е). Самыми энергичными восстановителями в соответствии со значениями I и Е являются щелочные металлы, а самыми пассивными - переходные металлы VII периода (Hf, Та, W, Re).

Только восстановителями могут быть и атомы неметаллических элементов с отрицательным окислительным числом, например элементы IV А - VII А подгрупп в , и других соединениях, а также ион Н-1 (гидрид-анион). В ряду сходных водородных соединений неметаллов HF, НСl, НВr и HI их восстановительная функция усиливается в том направлении, которое соответствует уменьшению электроотрицательности неметалла. HI - сильный восстановитель, a HF - в водных растворах восстановленные свойства не проявляет.

II группа. Только окислителями могут быть атомы элементов с наивысшим положительным окислительным числом в соединениях, а также атомы и молекулы фтора и кислорода (за исключением соединений фтора с кислородом).

Атомы с максимальным окислительным числом содержатся в высших оксидах и их производных - гидроксидах и солях: , , , , . Окислительная способность оксидов, как правило, выше, чем у соответствующих гидроксидов и особенно солей

, , ,

В этом ряду окислительная способность возрастает.

Слабыми окислителями являются катионы щелочных и щелочно-земельных металлов. В отличие от них сильными окислителями являются катионы пассивных металлов (Bi3+, Сu2+, Ag+, Аu3+). Это свойство используется, например, при изготовлении печатных плат, химическое меднение которых проводят восстановлением ионов Сu2+ (из растворов комплексных соединений) формальдегидом.

III группа. Некоторые вещества в реакциях окисления-восстановления могут выступать и окислителями, и восстановителями (в зависимости от условий). Ими могут быть:

а) Атомы и молекулы неметаллов IV А - VII А подгрупп, бор, водород;

H-1H0H+1

S-2S0S+4S+6

б) Ионы элементов с промежуточным (между низшим и высшим) положительным окислительным числом в соединении.

Например, для марганца окислительными числами могут быть: Мn0, , , , , . Все формы его соединений с О.Ч. +2, +3, +4, +6 в зависимости от условий могут проявлять как окислительные, так и восстановительные функции.

в) Перекисные соединения (Н2О2, ВаО2 и др.).

Это связано со способностью соответствующих элементов отдавать или принимать электроны, повышая или понижая своё окислительное число. Двойственный характер поведения, например, Н2О2 обусловлен природой связи. Атомы кислорода связаны друг с другом единичной неполярной ковалентной связью. Так как при этом общая пара электронов симметрично расположена относительно обоих ядер, то данная связь не изменяет окислительного числа атомов кислорода. Зато полярная ковалентная связь атомов кислорода с водородом обеспечивает О.Ч. -1 каждому кислородному атому.

С одной стороны, молекула Н2О2 может распадаться с разрывом кислородной связи и образованием новых связей кислорода с атомами других элементов, в результате О.Ч. кислорода уменьшается до -2. При таком превращении перекись ведет себя как окислитель: + + Н2O2-1 + 2 > 2Н2O-2.

С другой стороны в Н2O2 могут разрываться связи О-Н, в результате образуются молекулы O2 и О.Ч. кислорода повышается до 0. В этом случае Н2O2 проявляет восстановительные свойства.

Во многих реакциях, протекающих в водных растворах, участвуют соединения, атомы которых не изменяют О.Ч. Такие вещества в окислительно-восстановительных процессах вводят для создания среды: нейтральной, щелочной и кислотной.

8.3 Количественная характеристика окислительно-восстановительных реакций

Окислительно-восстановительная активность простых веществ. Для количественной характеристики окислительно-восстановительной активности простых веществ используются такие величины как энергия ионизации, энергия сродства к электрону, которые зависят прежде всего от положения атомов элементов в периодической системе Д. И. Менделеева.

При химических реакциях атомное ядро остаётся без изменения, а химические свойства атомов (способность их отдавать или присоединять электроны) зависят от величины радиуса атома и электронной структуры, при этом решающую роль играет структура наружной электронной оболочки. Чем больше радиус атомов и меньше число электронов наружного электронного уровня, тем слабее они удерживаются в атомах и, следовательно, тем больше их восстановительная активность. Энергия ионизации может служить мерой восстановительной способности атомов: чем меньше её величина, тем более сильным восстановителем является атом. Так, щелочные металлы, имеющие наибольшие радиусы атомов и всего по одному валентному электрону, обладают наибольшей восстановительной активностью, при этом она возрастает сверху вниз, от лития к цезию и францию, в соответствии с увеличением радиусов атомов и уменьшением энергии ионизации или ионизационных потенциалов.

Такая закономерность характерна для подгрупп А (главных). В подгруппах В (побочных) при переходе от одного элемента к другому (в порядке увеличения заряда ядра атома) энергия ионизации относительно мало изменяется и характеризуется более высокими значениями, чем у элементов главных подгрупп. Это объясняется незначительным изменением радиусов их атомов (сказывается влияние лантаноидного сжатия), а также влиянием эффектов проникновения электронов к ядру и экранирования d- оболочкой внешних электронов.

Мерой окислительной способности атома служит энергия сродства к электрону (величина энергии, выделяемая или поглощаемая при присоединении электрона к нейтральному атому). Чем больше энергия сродства, тем более сильным окислителем является данный атом. В соответствии с этим окислителями являются атомы элементов, расположенные в правом верхнем углу периодической системы элементов, в главных подгруппах 5-7 групп. Окислительная активность элементов в этих подгруппах снижается сверху вниз. Например, в группе галогенов фтор является самым сильным окислителем.

Для оценки способности элементов к присоединению и отдаче электронов используют величину, называемую электроотрицательностью (ЭО), под которой понимают полусумму или сумму энергии ионизации атома и его энергию сродства к электрону. Для более удобного применения вместо абсолютных значений электроотрицательности (выражаемых в кДж/г-атом или эВ/атом) используют её относительные значения (ОЭО), принимая за единицу электроотрицательность лития. У фтора - самого сильного окислителя - ОЭО равна четырём. Чем больше ОЭО элемента, тем сильнее выражены его окислитель-

ные свойства, и наоборот, элемент, имеющий наименьшее значение ОЭО, наиболее активно проявляет восстановительные свойства.

Окислительно-восстановительная активность веществ, находящихся в растворах. Для количественной характеристики окислительно-восстановительной активности веществ, находящихся в растворах или контактирующих с ними, используются окислительно-восстановительные потенциалы (). Значения этих потенциалов (в вольтах) можно рассчитывать по уравнению Нернста, имеющего вид

,

где - нормальный или стандартный окислительно-восстановительный потенциал; F - число Фарадея; R - газовая постоянная; n - число электронов, отдаваемых или получаемых при превращении восстановленной формы в окисленную (или наоборот); - активная концентрация окислительной формы вещества; - активная концентрация восстановленной формы вещества; - активная концентрация ионов водорода. Например, для системы MnO4- + 8Н+ +5 = Мn2+ + 2О, в которой ионы МnO4- - являются окислительной формой вещества, а ионы Мn2+ - восстановительной формой вещества, окислительно-восстановительный потенциал определяется уравнением

После подстановки постоянных величин уравнение Нернста примет более простой вид:

где и - мольные концентрации окисленной и восстановленной формы веществ, - концентрация ионов водорода. Следует отметить, что, , когда = = = - 1 моль/л.

Окислительно-восстановительные потенциалы не являются неизменными. Они зависят от соотношения и , а также от температуры, природы растворителя, рН среды и др.

Направленность окислительно-восстановительных реакций. Значения обычно измеряются относительно нормального водородного электрода, потенциал которого принят за нуль.

Чем меньше алгебраическая величина , тем активнее данная окислительно-восстановительная система как восстановитель, т.е. тем она легче отдает электроны и переходит из восстановленной формы в окисленную и наоборот. Таким образом, окислительно-восстановительные потенциалы позволяют количественно оценить активность окислителя и восстановителя, направление и глубину протекания окислительно-восстановительной реакции.

Например, для реакции (в гомогенной фазе)

МnO4- + 5Fe2+ + 8Н+ = Mn2+ + 5Fe+ + 4Н2O

Стандартные потенциалы полуреакций имеют значения 1,52 В для первой и 0,77 В для второй:

МnO4- + 8Н+ + 5= Mn2+ + 5Fe3+ + 4Н2O Е0 =1,52 В

Fe3+ + = Fe2+ Е°=0,77 В

Окислительно-восстановительный потенциал для первой системы электроположительнее, чем для второй. Следовательно, при взаимодействии веществ, содержащих ионы MnO4- и Fe2+, первый, т.е. MnO4- выступает в роли окислителя, т.е. первая реакция протекает слева направо, а вторая справа налево.

Следовательно, окислительно-восстановительная реакция может протекать в выбранном направлении при условии, если окислительно-восстановительный потенциал окислителя больше потенциала восстановителя, т.е. если разность потенциалов (? Е = Еокислвосст) имеет положительное значение. В этом случае свободная энергия Гиббса имеет отрицательное значение, так как ? G = -nF ? E, где ? Е - разность потенциалов, F - число Фарадея, n - число электронов, участвующих в процессе. Чтобы ? G было меньше нуля, т.е. ? G < О, ? Е должна быть положительной величиной, т.е. самопроизвольное протекание окислительно-восстановительной реакции возможно, если потенциал окислителя больше потенциала восстановителя. Чем больше ? Е, тем отрицательнее значение ? G, и, следовательно, интенсивнее протекание окислительно-восстановительной реакции.

Пример. Возможен ли процесс

2KBr + PbO2 + 4HNO3 = Br2 + Pb(NO3)2 + 2KNO3 + 2Н2O?

Находим по таблице значения стандартных окислительно-восстановительных потенциалов, участвующих в реакции систем:

В реакции окислителем будет являться PbO2, а восстановителем бромид ион ? Е = =1,449 В -1,065 В = 0,384 В, т.е. ? Е > 0, реакция будет протекать самопроизвольно слева направо.

Чем больше величина ? Е реакций, тем интенсивнее она протекает. Например, из двух металлов - кальция и никеля -первый будет более интенсивно взаимодействовать с раствором НСl, т.к. = -2,87 В, а = -0,25 В.

8.4 Методы составления уравнения окислительно-восстановительных реакций

Для составления химических уравнений окислительно-восстановительных реакций применяют два метода:

а) электронного и б) ионно-электронного баланса.

Метод электронного баланса. Этот метод построен на подсчете общего числа электронов, переходящих от восстановителя к окислителю и определяется изменением окислительного числа элементов в реагирующих веществах до и после реакции.

В качестве примера рассмотрим реакцию:

В ходе взаимодействия окислительные числа изменяют хром и сера, при этом О.Ч. хрома уменьшается (следовательно Cr+6 - окислитель), а серы увеличивается (S-2 - восстановитель). Значения стандартных окислительно-восстановительных потенциалов подтверждают правильное определение окислителя и восстановителя (=1,033 В, =1,14 В).

Составляются электронные схемы частных процессов окисления и восстановления:

r+6 + 6 = 2Сr3+

S -2 - 2 = S0

Молекула K2Cr2O7 содержит два атома хрома, поэтому в электронной схеме берут 2Cr+6. Затем определяются коэффициенты перед окислителем и восстановителем, исходя из правила: общее число отданных восстановителем электронов равно числу принятых окислителем. В приведенном случае такими коэффициентами являются числа: 3 - перед восстановителем и 1 - перед окислителем.

2Cr+6 + 6=2Cr3+ 1

S -2 - 2=S0 3

2Cr+6 + S-2 = 2Cr3++S0

Найденные коэффициенты подставляют в левую часть уравнения рассматриваемой реакции. Коэффициенты для остальных соединений находятся путем сопоставления атомов в соединениях в левой и правой частях схемы. В результате окончательное уравнение реакции будет иметь вид:

K2Cr2O7 + 3H2S +4H2 SO4 = Cr2(SO4)3 + K2SO4 + 3S + 7H2O

Ионно-электронный метод. Ионно-электронный метод, так же как и метод электронного баланса, основан на определении общего количества элементов, перемещающихся от восстановителя к окислителю, но в этом методе коэффициенты определяют с учетом реальной формы ионов, участвующих во взаимодействии, и с учетом кислотности среды. Рассмотрим реакцию:

K2Cr2O7 + H2S + H2PO4 > Cr2(SO4)3 + S + K2SO4 + H2O

Или в ионной форме:

2К+ + Cr2O72- + H2S + 2Н+ + SO42- = 2Cr3+ + 3SO42- + S + 2К+ + SO42- + Н2O

При написании реакций в ионной форме следует помнить, что малодиссоциирующие, газообразные и труднорастворимые соединения записываются в уравнении в молекулярной форме.

Составляем ионно-электронные схемы для частных процессов окисления и восстановления с указанием исходных и образующихся реально существующих в условиях данной реакции ионов или молекул. Следует иметь ввиду, что в водных растворах большую роль играет среда, потому в реакциях могут участвовать молекулы Н2O, ионы Н+ или ОН-. Так, если продукт реакции содержит меньше кислорода (или вообще не содержит), чем исходный, то избыток кислорода связывается с молекулами воды с образованием гидроксид-ионов (О2- + Н2O = 2OН-).

Если продукт реакции содержит больше кислорода, чем исходное вещество, то недостающее количество кислорода в кислых и нейтральных средах берется из молекул воды, при этом освобождаются ионы водорода 2O = О2- + 2Н+), источником кислорода в щелочной среде служат ионы ОH-, при этом в качестве продукта реакции образуется вода (2OН- = О2- + Н2O).

Для рассматриваемого случая схемы полуреакций имеют вид:

Cr2O72- + 14Н+ > 2Сr3+ + 7Н2O

H2S > S + 2Н+

Левая часть первой схемы имеет суммарный заряд ионов +12 (-2 + 14 = 12), суммарный заряд правой части +6. Следовательно, в результате восстановления присоединяется 6 электронов;

во второй схеме левая часть содержит только незаряженные частицы (H2S), а суммарный заряд правой части равен +2. Следовательно, в результате окисления освобождаются два электрона, т.е.

Cr2O72- + 14Н+ + 6 = 2Cr3+ + 7Н2O 1

H2S - 2 = S + 2Н+ 3

Основные коэффициенты (1 и 3) подбираются также как и в методе электронного баланса.

Для составления ионного уравнения окислительно-восстановительной реакции следует просуммировать полученные полуреакции для процессов окисления и восстановления с учетом установленных коэффициентов при окислителе и восстановителе:

Cr2O72- + 14Н+ + 3H2S = 2Cr3+ + S + 7Н2O + 6Н+

Сократив на Н+, получим ионное уравнение с необходимыми стехиометрическими коэффициентами:

Cr2O72- + 8Н+ + 3H2S = 2Cr3+ + 3S+ 7Н2O

Для перехода к молекулярному уравнению следует поступать так: в левой части уравнения к каждому числу анионов приписывают соответствующее число катионов, а к катиону - анионов. Затем такие же ионы и в том же количестве записывают в правой части уравнения, после чего ионы объединяют в молекулы:

Cr2O72- + 8Н+ + 3H2S = 2Cr3+ + 3S+ 7Н2O

2К+, 4SO42- 4SO42-, 2К+

К2Сr2O7 + 4H2SO4 + 3H2S = Cr2(SO4)3 + 3S + K2SO4 + 7H2O

Особые случаи составления уравнений окислительно-восстановительных реакций. Чтобы без затруднений составлять уравнения окислительно-восстановительных реакций, следует иметь в виду некоторые общие случаи:

1. Если суммарное число электронов, отданное восстановителем (принятых окислителем), нечетно, а в результате реакции получается четное число атомов (хотя бы одного из элементов), то коэффициенты удваиваются. Например, в реакции

MnMnO4- + 8Н+ + 5 = Mn2+ + 4Н2O 1 2

I - 1=I0 5 10

2МnO4- + 16Н+ + 10I- = 2Мn2+ + 8Н2O +10I0

В этой реакции окислителем является ион МnO-4 (=1,54В), а восстановителем - ион I- ( = 0,54В).

2. В ряде случаев окислитель (восстановитель) расходуется дополнительно на связывание образующихся в результате реакции ионов, как, например, в реакции:

КМnO4 + НСl > Сl2 + МnCl2 + Н2О + КСl

МnO4- + 8Н+ + 5 = Mn2+ + 4Н2O 1 2

Сl-- = С10 5 10

nO4- + 16Н+ + 10Cl- = 2Мn2+ + 8Н2O +5Сl2

+, 6Cl- +, l-

В этой реакции 10 молекул НCl реагируют как восстановитель ( = 1,35 В) и еще 6 расходуются на связывание получающихся катионов калия и марганца (образование солей). В процессе восстановления иона-окислителя МnO4- участвует 5.

Получаем суммарное молекулярное уравнение:

2КМnO4 + 10НCl + 6НСl = 5Сl2 + 2МnCl2 + 8Н2O + КСl

или

2KMnO4 + 16НСl = 5С12 + 2МnCl2 + 8Н2O + 2КСl

8.5 Влияние факторов на характер и направление реакций

Влияние кислотности среды. Характер окислительно-восстановительного процесса во многом зависит от кислотности среды, в которой он происходит.

Например, реакция

H2SeO4 + 2НСl = H2SeO3 + Cl2 + Н2O

в кислой среде протекает слева направо, а в щелочной - справа налево.

Иногда среда может усилить или ослабить окислительно-восстановительную функцию соединения. Это можно проследить на взаимодействии перманганата калия с сульфитом натрия:

а) кислая среда

H2O

MnO4- + 8H+ + 5 = Mn2+ + 4H2O 2

SO32- + H2O - 2 = SO42- + 2H+ 5

2MnO4- + 16H+ + 5SO32- +5H2O = 2Mn2+ + 8H2O + 5SO42- + 3H2O

6H+ 10H+ + 3H2O

2MnO4- + 6H+ + 5S32- = 2Mn2+ + 3H2O + 5SO42-

2KMnO4 + 5Na2SO3 + 3H2SO4 = 2MnSO4 + K2SO4 + 5Na2SO4 + 3H2O

б) нейтральная среда

МnO4- + 2Н2O + 3 = МnO2 + 4OН- 2

2SO32- + Н2O - 2 = SO42- + 2Н+ 3

2MnO4- + 4Н2O+ 3SO32- + ЗН2O = 2MnO2 + 8OН- + 3SO42-+6H+

Н2O 2OН-

2MnO4- + 3SO32- + Н2O = 2MnO2 + 3SO42- + 2OН-

2KMnO4 + 3Na2SO3 + Н2O = 2MnO2 + 3Na2SO4 + 2КOН

в) щелочная среда

МnO-4 + = МnO2-4 2

SO32- + 2OН--2ё = SO42- + Н2O 1

2MnO4- + SO32- + 2OН- = 2MnO4- + SO42- + Н2O

2KMnO4 + Na2SO3 + 2КОН = K2MnO4 + Na2SO4 + Н2O

Из приведенных реакций видно, что в кислой среде окислительные свойства КМnO4 проявляются наиболее полно (Мn+7 восстанавливается до Мn+2). В меньшей степени окислительные свойства КМnO4 проявляет в нейтральной и щелочной

среде (Мn+7 восстанавливается до Мn+6).

Влияние температуры и концентрации. Кроме кислотности среды на характер и направление окислительно-восстановительных реакций влияют температура и концентрация реагирующих веществ.

Например, при взаимодействии хлора со щелочью обнаруживается одновременное влияние этих двух факторов. Если газообразный хлор пропускать через концентрированный раствор горячей щелочи, то реакция пойдет по уравнению:

3С12 + 6NaOH = NaClO3 + 5NaCl + 3H2O

При взаимодействии хлора с холодным и разбавленным раствором щелочи протекает иная реакция:

Сl2 + 2NaOH = NaClO + NaCl + Н2O

Во многих случаях температура определяет направление процесса. В полупроводниковой технике широко применяется иодидный способ получения чистейшего кремния, который основан на обратимой реакции:

Si + 2I2 SiI4

Равновесие реакции при 750 - 850 °С практически полностью сдвинуто в сторону образования SiI4. При повышении температуры до 1000 - 1200 °С происходит термическая диссоциация тетраиодида кремния.

8.6 Типы окислительно-восстановительных реакций

Рассмотренные выше примеры относятся к типу межмолекулярных реакций, т.е. таких, в которых окислитель и восстановитель представляют различные вещества.

Окисление-восстановление происходит не только при взаимодействии нескольких веществ, но при определенных условиях и в одном веществе, т.е. изменение окислительного числа атомов происходит в одной и той же молекуле. Такие реакции относятся к внутримолекулярным реакциям.

Обычно это реакции термического разложения веществ.

Например

КСlO3 > КСl + O20

Сl5+ + 6 = Сl-1 2

2O-2 - 4 = O20 3

l5+ + 6O-2 = 2Сl

2КСlO3 = 2КСl + 3O2

В реакциях самоокисления - самовосстановления или диспропорционирования в отличие от процессов внутримолекулярного окисления - восстановления происходит одновременное уменьшение и увеличение окислительного числа атомов одного и того же элемента. Например,

K2MnO4 + H2O > KMnO4 + MnO2 + КОН

MnO42- - = MnO4- 2

MnO42- + 2H2O + 2 = MnO2 + 4OH- 1

3MnO42- + 2H2O = 2MnO4- + MnO2 + 4OH-

или в молекулярной форме

3K2MnO4 + 2Н2O = 2KMnO4 + 4КОН + MnO2

Из трех молекул K2MnO4 две выступают в качестве восстановителя, одна - в качестве окислителя.

В заключение следует отметить, что окислительно-восстановительные реакции составляют важный раздел курса, т.к. большинство протекающих в природе и используемых в технике процессов являются окислительно-восстановительными.

Знание вопросов теории окислительно-восстановительных процессов позволяет выбрать наиболее эффективные процессы получения металлов из руд, химической и электрохимической обработки металлов, получения различных неорганических веществ и многое другое.

Глава 9. ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ

Электрохимия изучает процессы, связанные с взаимным превращением химической и электрической энергии. Преобразование энергии химических реакций в электрическую осуществляются в устройствах, называемых химическими источниками тока или гальваническими элементами. Химические же превращения за счёт электрической энергии происходят в электролизёрах.

В устройствах обоих типов протекают окислительно-восстановительные процессы, называемые электрохимическими, особенностью которых является не хаотичность, а пространственная направленность электронных переходов. Процессы окисления и восстановления в этом случае пространственно разделены и проходят в двойном электрическом слое у электродов, соединенных металлическим проводником.

9.1. Строение двойного электрического слоя

Если в воду (или раствор электролита) погрузить пластинку какого-либо металла, то на его поверхности возникают процессы, приводящие к образованию так называемого двойного электрического слоя.

Ионы металла из его кристаллической решетки под влиянием полярных молекул воды отрываются и переходят в воду (или раствор). При этом поверхность металла заряжается отрицательно за счёт оставшихся в металле электронов, а слой воды заряжается положительно за счёт ионов, которые перешли в раствор. В результате на границе Ме - раствор устанавливается равновесие Ме2+ (металл) Ме2+(раствор), т.к. по мере увеличения заряда пластинки переход катионов в одноимённо заряженный раствор затрудняется. Если при установлении контакта металл-раствор скорость перехода катионов из металла в раствор была меньше, чем скорость их перехода в обратном направлении, то между электроном и раствором также устанавливается равновесие; но в этом случае электрод заряжается положительно, а раствор - отрицательно. Таким образом, происходит образование двойного электрического слоя, который может иметь различные заряды. Рассмотрим подробнее, от чего это зависит и как количественно можно охарактеризовать двойной электрический слой.

Электродные потенциалы. Заряд иона относительно велик, а электрическая ёмкость на границе между металлом и раствором мала, поэтому уже при переходе очень малого количества ионов между металлом и раствором возникает значительная разность потенциалов. Например, при переходе ионов серебра в количестве одной стомиллионной доли грамма (10-8 г) из раствора в металл его потенциал становится положительнее на 0,5 В.

Таким образом, двойной электрический слой можно уподобить конденсатору, одна из обкладок которого представляет собой поверхность металла, а другая - слой ионов в растворе у поверхности металла. Между разноимённо заряженными обкладками и возникает разность, или скачок потенциала.

Различают три случая возникновения скачка потенциала на границе металл - раствор электролита.

I. Ионы металла, находящиеся на поверхности обладают избыточной энергией по сравнению с энергией частиц, находящихся внутри металла. Взаимодействие полярных молекул воды с поверхностью металла приводит к отрыву катионов металла в виде гидратированных ионов

Ме + mН2О Меn+ 2О)m + n

В этом случае поверхность металла заряжается отрицательно (-), а слой электролита, примыкающий к ней - положительно (+). Образуется двойной слой с определённой разностью потенциалов.

Рис. 59. Двойной электрический слой (а) и падение потенциал в нём (б); l1-адсорбционный слой; l2-диффузионный слой

Катионы распределяются следующим образом: часть ионов плотно прилегает к поверхности металла (ионы находятся на расстояни радиуса иона), образуя так называемый адсорбционный слой (рис.59), а другая часть катионов под влиянием сил молекулярного движения распределяется на некотором расстоянии от поверхности металла, образуя диффузионный слой. Следовательно, изменение потенциала в двойном электрическом слое слагается из падения потенциала в адсорбционном и диффузионном слое.

= + /

По мере увеличения концентрации катионов металла в растворе становится вероятным обратный процесс - восстановления ионов металла.

С течением времени скорость окисления металла становится равной скорости восстановления его ионов из раствора. На границе металл - раствор устанавливается равновесная разность потенциалов, которая называется равновесным электродным потенциалом (равновесный скачок потенциала).

Такая картина наблюдается для активных металлов. Это свидетельствует о том, что способность посылать ионы в раствор различных металлов выражена неодинаково. Она зависит от энергии ионизации атомов металла, от энергии гидратации ионов металла. Чем меньше энергия ионизации и больше энергия гидратации, тем выше способность металла окисляться и посылать свои ионы в раствор, при этом металл будет иметь и более отрицательный потенциал.

II. Малоактивные металлы (Cu, Ag) окисляются с трудом, выход ионов в раствор почти не происходит. Поэтому, например, в случае медного электрода, погруженного в раствор соли меди, преобладает адсорбция ионов металла на поверхности электрода. Схематично процесс можно изобразить следующим образом: [nCu] + x Cu2+ • (H2O)m [nCu Cu2+ + mH2O

В этом случае поверхность металла заряжается положительно, а прилегающий к ней раствор - отрицательно за счёт избытка в нём анионов (рис.60).

Рис. 60. Двойной электрический слой (а) и падение потенциала в нём (б): l1 - адсорбционный слой; l2 - диффузионный слой.

III. Иной механизм возникновения потенциала на инертном электроде, который опущен в раствор, содержащий окисленную или восстановленную форму какого - либо соединения. Например, если в раствор FeCl3 опустить платиновый (инертный) электрод, то катион Fe3+ отнимает от поверхности платины электрон и превращается в ион Fe2+:

FeCl3 + з > FeCl2 + Cl-

В результате платина получает положительный заряд, а раствор у поверхности её - отрицательный заряд за счёт образовавшегося избытка ионов Cl-. Равновесие в двойном электрическом слое выразится уравнением Fe3+ + e Fe2+. Таким образом, возникает положительный потенциал на платине, который будет тем выше, чем больше окислительная способность катиона. И, наоборот, чем сильнее восстановительная активность иона, тем вероятней отдача электрона им в кристаллическую решётку платины и возникновение отрицательного заряда на ней. Так появляется отрицательный потенциал на платине в растворе, содержащем ионы Cr2+. В двойном слое устанавливается равновесие Cr2+Cr3+ + e. Потенциал платины в разобранных двух примерах определяется соотношением активных концентраций окисленной и восстановленной формы ионов и характеризует окислительно-восстановительную способность каждой из систем Fe2+ , Fe3+ / Pt и Cr2+ ,Cr3+ / Pt, потому этот потенциал называется окислительно - восстановительным.

Во всех случаях возникающему электродному потенциалу присваивают тот знак, который имеет поверхность металла в двойном электрическом слое.

Разные металлы имеют различные потенциалы. Чем более активным является металл, тем отрицательнее его равновесный потенциал.

Потенциал электрода в растворе зависит не только от природы металла, но и от концентрации раствора и температуры. Зависимость равновесного потенциала электрода от концентрации выражается уравнением Нернста:

E= E+ ln [Men+],

где [Men+]-концентрация ионов металла в растворе, г - моль/л;

R - универсальная газовая постоянная; 8,314 Дж/град. моль

n - валентность металла;

F - число Фарадея; 96 494 Кл/г-экв.

Т - температура раствора.

Подставив значение R и F при T = 2980, получим уравнение в приведенном виде:

EMe = E + lg [Men+],

где E - стандартное значение электродного потенциала.

Потенциал называется стандартным (нормальным) в том случае, когда активность каждого из участников обратимой электродной реакции равна единице. Если окислитель или восстановитель в системе находится в газообразном состоянии (O2, Cl2, H2 и др.), то а = 1 при давлении газа 1 атм.

Так как до сих пор не существует методов измерения абсолютных величин потенциалов, то в качестве потенциала сравнения, условно принятого за нуль, выбран потенциал нормального водородного электрода (концентрация ионов [H+] в растворе H2SO4 равна 1 г - ион/л и p = 1 атм). По отношению к этому стандартному электроду измеряют потенциалы различных электродов. Значения стандартных электродных потенциалов сведены в таблицу. Ряд стандартных электродных потенциалов называют также рядом напряжений металлов. Каждый металл, стоящий в ряду напряжений левее, более активен,

чем следующий за ним, может вытеснять из растворов солей все металлы, которые следуют за ним; могут вытеснять водород из кислот, если стоят левее водорода.

9.2 Гальванические элементы

Гальваническими элементами называются устройства, в которых химическая энергия окислительно-восстановительной реакции превращается в электрическую. Гальванический элемент состоит из 2-х металлических электродов, помещённых в раствор электролитов, т.е. из 2-х полуэлементов.

Рассмотрим работу гальванического элемента, составленного из 2-х полуэлементов Zn2+ / Zn и Cu2+ / Cu, т.е. медная пластина погружена в раствор CuSO4, и цинковая пластина - в ZnSO4. (рис.61). Для предотвращения прямого воздействия и взаимодействия окислителя и восстановителя электроды отделены друг от друга пористой перегородкой. На поверхности цинковой пластины возникает двойной электрический слой и устанавливается равновесие Zn Zn2+ + 2з. В результате протекания этого процесса возникает электродный потенциал цинка. На поверхности медной пластины также возникает двойной электрический слой и устанавливается равновесие Cu Cu2+ + 2 з. В результате возникает электродный потенциал меди. Потенциал цинкового электрода отрицательнее потенциала медного электрода (E/=-0,76В < Е/=+0,34В).

При замыкании внешней цепи, т.е. при соединении цинка с медью металлическим проводником, вследствие разности потенциалов часть электронов с цинковой пластинки перейдёт на медную.

Это нарушит равновесие в двойном электрическом слое у цинка. Обе системы стремятся снова к равновесию за счёт окисления цинка и восстановления катионов меди на медном электроде. Этими процессами сохраняется разность потенциалов пластинок, обеспечивающая постоянный переход электро-

Рис. 61. Схема гальванического элемента Якоби - Даниэля.

нов по проволоке от цинка к меди - электрический ток в цепи. Во внутреннем участке цепи анионы перемещаются от медного электрода к цинковому, а катионы цинка Zn2+ и меди Сu2+ - в обратном направлении. Суммарный процесс выражается тем же уравнением реакции Zn + CuSO4 = ZnSO4 + Cu, что и при непосредственном взаимодействии окислительно - восстановительных систем Zn2+ / Zn и Cu2+ / Cu0.

Электрический ток в гальваническом элементе возникает за счёт окислительно - восстановительной реакции, протекающей так, что окислительные и восстановительные процессы оказываются пространственно разделёнными: на положительном электроде происходит процесс восстановления, на отрицательном - процесс окисления. Электрод, на котором происходит процесс восстановления, называется катодом (Cu), окисления - анодом (Zn).

Необходимое условие работы гальванического элемента - разность потенциалов электродов, которая называется электродвижущей силой гальванического элемента - ЭДС или е.

ЭДС элемента считается положительной, если токообразующая реакция в данном направлении протекает самопроизвольно. Положительной ЭДС отвечает и определённая условность в значении схемы элемента. Она заключается в том, что записанный слева электрод должен быть отрицательным. Например, элемент Даниэля - Якоби схематически изображается так:

(-) Zn |ZnSO4| |CuSO4| Cu (+)

Двойная черта указывает на то, что диффузионный потенциал между растворами ZnSO4 и CuSO4 устранён. Это достигается применением промежуточного насыщенного раствора KCl или KNO3 с одинаковой подвижностью катионов и анионов. ЭДС элемента определяется разностью электродных потенциалов меди и цинка, т.е. ЭДС = Е/ - E /

ЭДС = Е Cu - Zn = 0,34 - (- 0,76) = 1,1 (В), если концентрация ионов цинка и меди равна 1 г - ион / л.

Если на электродах испытывает превращение один г - экв. вещества, то по закону Фарадея через систему протекает один фарадей электричества, при превращении одного моля вещества - n фарадеев электричества, равное числу грамм - эквивалентов в одном моле вещества. Таким образом, максимальная электрическая работа гальванического элемента при превращении одного моля вещества Aэр равна

Aэр = nFE,

где Е - Э.Д.С. гальванического элемента.

С другой стороны, максимальная полезная работа Амр, которую может совершить система при протекании реакции (p = const), равна энергии Гиббса реакции:

...

Подобные документы

  • Технологии получения углеродных нанотрубок. Использование их в эмиссионной электронике. Создание токопроводящих соединений, сверхбыстрых транзисторов на основе атомов углерода. Производство наноэлектронных приборов. Электрические свойства нанотрубки.

    презентация [557,0 K], добавлен 24.05.2014

  • Роль полупроводников в микро- и оптоэлектронике. Классификация полупроводниковых материалов. Диапазон электрических параметров различных полупроводников. Особые физико-химические свойства кремния. Применение германия в полупроводниковых приборах.

    контрольная работа [1,0 M], добавлен 15.12.2015

  • Кремний как материал современной электроники. Способы получения пористых полупроводников на примере кремния. Анализ процесса формирования, методов исследования, линейных и нелинейных процессов в неоднородных средах на основе пористых полупроводников.

    дипломная работа [6,3 M], добавлен 18.07.2014

  • Структура полупроводниковых материалов. Энергетические уровни и зоны. Электро- и примесная проводимость полупроводников. Виды движения носителей. Свойства электронно-дырочного перехода. Электропроводимость полупроводников в сильных электрических полях.

    реферат [211,5 K], добавлен 29.06.2015

  • Классификация, температурные зависимости концентрации, подвижностей носителей заряда собственных и примесных полупроводников. Общая характеристика и основные сведения о кристаллическом строении полупроводниковых материалов Si и Ge, методика выращивания.

    курсовая работа [1,5 M], добавлен 08.05.2009

  • Полупроводники и их физические свойства. Генерация и рекомбинация свободных носителей заряда. Влияние донорных и акцепторных примесей. Понятие р-п -перехода и факторы, влияющие на его свойства. Полупроводниковые диоды и биполярные транзисторы, их виды.

    контрольная работа [1,2 M], добавлен 19.03.2011

  • Общие сведения о сегнетоэлектриках, диэлектрические свойства и электропроводность, линейные и нелинейные свойства. Сегнетоэлектрики и антисегнетоэлектрики, области спонтанной поляризации (доменов). Направления применения сегнетоэлектрических кристаллов.

    курсовая работа [10,0 M], добавлен 29.07.2009

  • Общие сведения о графене - двумерной аллотропной модификации углерода, история его открытия, структура, псевдомагнитные свойства. Получение нового полупроводникового материала на основе графена. Один из способов создания графенового двоичного триггера.

    доклад [3,8 M], добавлен 20.05.2013

  • Общие сведения о резисторах, классификация, система условных обозначений и маркировка. Основные электрические параметры и свойства резисторов. Характеристики и свойства переменных и постоянных резисторов, назначение и использование резисторных наборов.

    реферат [33,4 K], добавлен 30.08.2010

  • Принципы работы полупроводниковых приборов. Физические основы электроники. Примесная электропроводность полупроводников. Подключение внешнего источника напряжения к переходу. Назначение выпрямительных диодов. Физические процессы в транзисторе, тиристоры.

    лекция [4,4 M], добавлен 24.01.2014

  • Отличия энергетических диаграмм проводников, полупроводников и диэлектриков. Принцип работы биполярного транзистора. Фотодиод: принцип работы, параметры и назначение. Определение параметров биполярных транзисторов, включенных но схеме с обидим эмиттером.

    контрольная работа [1,4 M], добавлен 05.07.2014

  • Понятие и общая характеристика приборов - излучателей или приемников электромагнитных волн. Описание детекторных радиоприемников, принципы работы диода и триода. Устройство транзистора, свойства полупроводников, особенности возникновения p-n перехода.

    реферат [85,4 K], добавлен 17.03.2011

  • Макромир, микромир, наномир, мир элементарных частиц: основные положения квантовой теории; свойства микро- и наночастиц. Основы микроскопии в электронике. История создания технологических микрообъектов. Наноэлектронные элементы информационных систем.

    курсовая работа [1,7 M], добавлен 15.06.2013

  • Начало использования полупроводников 1940-50-е годы. Появление и использование первых интегральных схем. Появление БИС микропроцессоров в 1970-е годы. Распространение архитектуры intel. Развитие технологий литорафии. Усложнение техпроцесса в 2000-е годы.

    реферат [84,0 K], добавлен 22.03.2015

  • Строение твердых тел, их энергетические уровни. Оптические и электрические свойства полупроводников. Физические эффекты в твердых и газообразных диэлектриках, проводниках, магнитных и полупроводниковых материалах. Токи в электронно-дырочном переходе.

    курс лекций [1,7 M], добавлен 11.01.2013

  • Электрофизические свойства полупроводниковых материалов, их применение для изготовления полупроводниковых приборов и устройств микроэлектроники. Основы зонной теории твердого тела. Энергетические зоны полупроводников. Физические основы наноэлектроники.

    курсовая работа [3,1 M], добавлен 28.03.2016

  • Электропроводимость полупроводников. Образование электронно-дырочной проводимости и ее свойства. Условное обозначение полупроводниковых приборов, классификация и основные параметры. Биполярные и МОП транзисторы. Светоизлучающие приборы и оптопары.

    лекция [1,8 M], добавлен 17.02.2011

  • Метод для исследования СВЧ диэлектриков при повышенных температурах. Характеристика волноводного, резонаторного и оптического методов. Пути разработки функциональной, принципиальной схемы измерительной установки и вопросов конструирования и технологии.

    дипломная работа [655,4 K], добавлен 03.03.2011

  • Криоэлектроника (криогенная электроника) – направление электроники и микроэлектроники, охватывающее исследование взаимодействия электромагнитного поля с электронами в твердых телах при криогенных температурах и создание электронных приборов на их основе.

    реферат [124,3 K], добавлен 30.12.2008

  • Этапы развития информационной электроники. Усилители электрических сигналов. Развитие полупроводниковой информационной техники. Интегральные логические и аналоговые микросхемы. Электронные автоматы с памятью. Микропроцессоры и микроконтроллеры.

    реферат [1,0 M], добавлен 27.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.