Экономическое содержание двойственной задачи. Правила построения симметричных двойственных задач. Преобразование матрицы методом полного исключения переменных. Рассмотрение вопроса о целесообразности включения продукта в производственную программу.
Противостояние логицизма и интуиционизма, формализма и теоретико-множественных оснований математики. Применяемые в математике аксиомы выбора, закон исключенного третьего, аксиомы сводимости, понятия теории множеств. Значение прикладной математики.
Методика обучения решению математических задач арифметическим способом. Введение иррациональных чисел и показ способов их изображения на числовой прямой. Развитие умений в представлении обыкновенных дробей в виде приближенного значения десятичной дроби.
Определение длины сторон треугольника и косинуса угла между двумя прямыми. Уравнение высоты, проходящей через точку параллельно направляющему вектору. Определение объема параллелепипеда, построенного на векторах и косинуса угла между плоскостями.
- 4715. Теория игр
Игра в нормальной форме. Ситуации сильного равновесия. Дуэли с одним выстрелом. Вектор Шепли произвольных игр и для игр власти. Арбитражная схема Нэша. Ситуация равновесия в позиционной игре с полной информацией, в непрерывных антагонистических играх.
- 4716. Теория игр
Определение особенностей изучения формальных моделей принятия оптимальных решений в условиях конфликта. Характеристика распределения свойств кооперативной теории игр. Выявление последовательности ведения антагонистических и позиционных игр в математике.
- 4717. Теория игр
Понятие и отличительные черты нестратегической теории игр, ее характеристика и применение. Значение и описание кооперативной теории игр. Специфика и использование антагонистических и позиционных игр. Решение стандартной задачи линейного программирования.
- 4718. Теория игр
Решение конфликтной ситуации двух лиц в чистых и смешанных стратегиях аналитическим методом, понизив порядок платежной матрицы. Математические ожидания выигрыша первого игрока при его смешанной стратегии для обеих чистых стратегий второго игрока.
- 4719. Теория игр
Изучение понятий теории игр. Порядок составления платежной матрицы. Смешанное расширение матричной игры. Доминируемые стратегии в теории игр. Процесс создания математической игровой модели. Матричная игра в чистых стратегиях, ее взаимосвязь с природой.
Теория игр как раздел прикладной математики, исследующий модели принятия решений в условиях несовпадения интересов сторон. Конфликтно управляемые системы с иерархической структурой в экономике России. Пример иерархической игры для расчетов выигрыша.
Матричные антагонистические игры, схема принятия решений. Основная теорема теории матричных игр (по Дж. фон Нейману). Теорема о принципе максимина. Игры с нулевой суммой в чистых стратегиях. Вычисление оптимальных стратегий на примере решения задач.
Подходы, описывающие получение формализованных уравнений избыточных измерений крутизны преобразования без усреднения. Коэффициенты при выходных величинах. Решение задачи пространственно-временного усреднения в структуре комбинаторных уравнений величин.
- 4723. Теория катастроф
Определение теории катастроф. Ее задача и область применения. 7 элементарных катастроф по Тому: катастрофы типа "Складка", "Сборка", "Ласточкин хвост", "Бабочка". Потенциальные функции с двумя активными переменными. Классификация катастроф по Арнольду.
Практические примеры проверка статистических гипотез. Распределение эффектов одного фонового шума, суммы полезного сигнала. Плотности распределения, лемма Неймана–Пирсона. Уравнение согласованной фильтрации. Математическое ожидание статистики, дисперсия.
- 4725. Теория множеств
Элементы теории множеств, операции над ними. Инъективные и сюръективные отображения. Отношение эквивалентности. Элементы теории кодирования, графов. Представление графов в памяти компьютера. Пример нахождения кода Харари графа. Задачи о раскраске.
- 4726. Теория множеств
Применение теории множеств в различных разделах математики. Кардинальные числа и появление теории меры. Сравнительная количественная оценка множеств. Определение понятий длины, площади и объема в геометрии фигур. Развитие теории интеграла и рядов Фурье.
- 4727. Теория множеств
Определение понятия множеств Г. Кантора, их примеры и обозначения. Операции над множествами: пересечение, объединение, разность и дополнение, их наглядное представление на диаграмме Эйлера-Венна. Равенство, тождественность и эквивалентность множеств.
- 4728. Теория множеств
Рассмотрение обозначений, принятых в теории множеств. Характеристические функции множеств, свойства операций над множествами. Применение понятия мощности множества для количественной характеристики множеств. Верхняя и нижняя грани числового множества.
Аксиомы теории Цернело-Френкеля по устранению. Аксиома выбора как один из важнейших теоретико-множественных принципов, альтернативные формулировки аксиомы и её применение. Принцип вполне упорядочивания и лемма Цорна для частично упорядоченных множеств.
Нахождение функций принадлежности и представление в виде поэлементных суммы множества. Изображение графически их функций принадлежности. Нахождение аналитического выражения для функции принадлежности объединения множеств; геометрическое представление.
Особенности применения аппарата теории четких отношений. Методы анализа данных, основанные на теории нечетких отношений. Характеристика операций над бинарными их разновидностями. Специфика описания их объединения и пересечения, основные свойства.
Анализ задачи оптимальной остановки, основанной на теории вероятности. Статистическое решение проблемы выбора времени, чтобы принять определённое действие, для того чтобы максимизировать ожидаемое вознаграждение или минимизировать ожидаемые затраты.
- 4733. Теория относительности
Инерциальная система отсчета: понятие и структура. Преобразования Галилея и Лоренца, их интерпретация и математическое обоснование. Противоречия классической механики и законов электродинамики. Содержание и следствия концепций теории относительности.
Ознакомление с теорией относительности на примере сказки английского математика Льюиса Кэррола "Алиса в зазеркалье". Практические свойства выпуклого зеркала. Законы пространства и вычисление коэффициента сжатия в любом направлении, перпендикулярном оси.
Рассмотрение плана проведения семинарских занятий. Анализ алгебраических поверхностей и их классификация. Приведение уравнений поверхностей второго порядка к каноническому виду. Исследование асимптотических направлений, пересечений, касаний, особых точек.
- 4736. Теория подобия
Учение о подобии. Теорема подобия для случая подобия механических явлений. Экспериментальная проверка приближенного метода моделирования. Математическое и физическое подобие. Уравнения, описывающие явления природы. Движение математического маятника.
- 4737. Теория поля
Основные понятия теории поля. Фиксированная система координат в пространстве. Рассмотрение основных характеристик и классификации скалярного и векторного полей. Формулы Стокса и Остроградского-Гаусса. Векторный дифференциальный оператор Гамильтона.
Элементы математической теории скалярных и векторных полей. Характеристики скалярного поля. Потенциальное векторное поле, его свойства. Потенциальное несжимаемое поле и поле Лапласа (гармоническое). Теорема о разложимости произвольного векторного поля.
- 4739. Теория пределов
Геометрический смысл модуля числа - расстояния от начала отсчёта до точки, которой соответствует это число на координатной прямой. Бесконечно малая функция и ее свойства. Основные теоремы о пределах, их единственность, арифметические операции над ними.
- 4740. Теория принятия решений
Определение понятий "планирование", "прогнозирование". Виды неопределенностей, этапы в процессе планирования. Основные методы принятия решений. Задачи оптимизации при принятии решений. Этапы и цель разработки моделей линейного программирования.