Характеристика детской неврологии

Семиотика поражений нервной системы у детей. Сущность неврологического обследования малышей грудного возраста. Анализ травм головного и спинного мозга. Характер важнейших симптомокомплексов неврологии. Особенности нарушения мозгового кровообращения.

Рубрика Медицина
Вид учебное пособие
Язык русский
Дата добавления 06.04.2015
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Проба Арендта. Основана на законе сообщающихся сосудов. Производят одновременно и вентрикулярную, и люмбальную пункции и соединяют иглы с манометрическими трубками. При отсутствии блока цереброспинальная жидкость в трубочках поддерживается на одном горизонтальном уровне независимо от положения больного. При горизонтальном положении больного в трубочках устанавливается равное давление. При опускании головного конца стола цереброспинальная жидкость как бы переливается в верхнюю трубочку: возрастает давление в желудочках мозга и уменьшается в конечной цистерне.

При опускании ножного конца возрастает давление в конечной цистерне и снижается в боковых желудочках. При наличии блока субарахноидального пространства трубочки перестают быть сообщающимися сосудами и при переменах положения тела давление в них не меняется.

Клеточные элементы цереброспинальной жидкости. У новорожденных в цереброспинальной жидкости содержится в норме 20--25 лимфоцитов в 1 мкл, у детей в возрасте от 3 мес до 1 года --12--15 лимфоцитов, у детей старшего возраста и взрослых -- 1--5 лимфоцитов в 1 мкл. Подсчет клеточных элементов осуществляется в камере Фукса--Розенталя объемом 3 мкл. Поэтому иногда число клеточных элементов в лабораторных анализах указывается в 3 мкл (например, 15/3). В норме цереброспинальная жидкость не содержит нейтрофилов и эритроцитов. При попадании в нее эритроциты постепенно теряют пигмент, отчего цереброспинальная жидкость приобретает вместо красного или розового цвета желтоватый цвет (ксантохромия).

Повышение содержания лейкоцитов в цереброспинальной жидкости называется плеоцитозом. При гнойных менингитах наблюдается нейтрофильный плеоцитоз, при серозных -- лимфоцитарный, при эхинококкозе, цистеркозе мозга -- эозинофильный. При некоторых заболеваниях в цереброспинальной жидкости обнаруживаются клеточные элементы, специфические для этих заболеваний (лейкемические клетки при остром лейкозе, опухолевые клетки при опухолях мозга и оболочек).

Содержание белка в нормальной цереброспинальной жидкости колеблется от 0,1 до 0,3 г/л. Изменение количества белка может зависеть от нарушения процессов продукции, всасывания и циркуляции жидкости, от повышения проницаемости сосудов мозга. Повышение содержания белка при поясничном проколе может определяться у больных с блоком субарахноидального пространства, что связывается с преобладанием процессов всасывания цереброспинальной жидкости над ее продукцией и с нарастающей ее концентрацией; одновременно в полости черепа, где имеется дефицит всасывания, цереброспинальная жидкость разжижается и количество белка падает ниже 0,1 г/л. Увеличение количества белка может наблюдаться при острых энцефалитах (повышенная проницаемость мозговых сосудов), опухолях мозга (блок подоболочечного пространства или распад опухолевой ткани).

В клинике встречается одновременное повышение содержания в цереброспинальной жидкости клеточных элементов и белка (например, при энцефалитах, субарахноидальном кровоизлиянии). Иногда при повышении содержания белка количество клеточных элементов остается нормальным -- белково-клеточная диссоциация. Белково-клеточная диссоциация наблюдается при блоке подоболочечного пространства спинного мозга (кистозный арахноидит, опухоль спинного мозга, оболочек, позвоночника). При менингитах может отмечаться клеточно-белковая диссоциация: высокий плеоцитоз при нормальном или незначительно повышенном количестве белка.

Применяется несколько реакций, позволяющих установить увеличение в цереброспинальной жидкости содержания глобулинов, что имеет значение для диагностики некоторых воспалительных заболеваний мозга и его оболочек. Наиболее широко в клинической практике используются реакции Нонне--Апельта, Панди, Вейхбродта. Степень выраженности реакции оценивают по четырехбалльной системе плюсами.

Сахар содержится в цереброспинальной жидкости в количестве 0,45--0,65 г/л (у детей содержание сахара несколько выше, чем у взрослых--0,5--0,75 г/л). При бактериальных менингитах (гнойных, туберкулезных) количество сахара в цереброспинальной жидкости уменьшается до 0,2--0,1 г/л, при энцефалитах может повышаться до 0,8-1 г/л.

Содержание хлоридов в цереброспинальной жидкости в норме равно 7--7,5 г/л. При менингитах количество хлоридов уменьшается, при заболеваниях почек, особенно при уремии, повышается.

Определенное диагностическое значение может иметь постановка иммунобиологических и коллоидных реакций (диагностика сифилиса, бруцеллеза и др.), а также проведение бактеорологических и вирусологических исследований цереброспинальной жидкости.

РЕНТГЕНОЛОГИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Рентгенография черепа и позвоночника. Рентгенографию черепа применяют при внутричерепных заболеваниях, травмах головы, заболеваниях костей черепа, рентгенографию позвоночника -- при патологических изменениях в позвонках, их сочленениях, связочном аппарате.

Снимки делают в двух проекциях -- в фас и профиль. На краниограмме обращают внимание на контуры и размеры черепа, черепные швы (расхождение, обызвествление), роднички (раннее или позднее закрытие), развитие сосудистых борозд, выраженность пальцевых вдавлений, контуры турецкого седла, клиновидных отростков, пирамидки височной кости, придаточных полостей носа. При анализе краниограмм учитывают возрастные особенности строения костей черепа ребенка (рис 62).

Толщина костей черепа у детей меньше, чем у взрослых. Полностью большой родничок закрывается к 1 году 4 мес. Кости черепа податливы и пластичны. Чем моложе ребенок, тем резче выражена податливость костей. Пальцевые вдавления (отпечатки извилин) у детей в возрасте до 1 года отсутствуют. Они появляются после года. Усиление рисунка пальцевых вдавлений и сосудистых борозд наблюдается при повышении внутричерепного давления. /

С помощью краниограммы устанавливают врожденные дефекты костей черепа, раннее расхождение или заращение черепных швов, уродства мозга, гидроцефалию, микроцефалию, травматические повреждения, кальцинаты, при невриномах VIII нерва -- расширение внутреннего слухового прохода, при опухолях гипофиза, краниофарингиоме -- разрушение турецкого седла.

На рентгенограммах позвоночника выявляются врожденные аномалии развития позвоночника: шейные ребра, незаращение дужек позвонков -- spina bifida (чаще в области I крестцового позвонка), деструкция тел позвонков при туберкулезном спондилите. При деформирующем спондилоартрозе определяется разрастание суставных поверхностей, при остеохондрозе -- разрастание хрящевых поверхностей. Детям младшего возраста, которых трудно фиксировать, перед краниографией делают клизму из 2% раствора хлоралгидрата в возрастной дозе. Перед рентгенографией нижнегрудного, поясничного, крестцового отделов позвоночника производят очистительную клизму.

Контрастные методы исследования. Широко применяют в клинике для уточнения диагноза при различных заболеваниях головного и спинного мозга. К контрастным методам исследования относятся пневмоэнцефалография, вентрикулография, миелография и ангиография.

Пневмоэнцефалография является ценным диагностическим методом исследования при заболеваниях нервной системы. Воздух, введенный в субарахноидальное пространство спинного мозга, заполняет ликвороносные щели, цистерны, желудочки, которые становятся видимыми на краниограммах. Рентгенологическое изображение подпаутинных пространств и желудочков мозга хорошо изучено. При заболеваниях головного мозга, сопровождающихся смещением мозговой ткани (опухоль, абсцесс, гематома, туберкулома, гумма), топография и форма желудочков мозга меняются, что выявляется на пневмоэнцефалограмме (рис. 63).

Перед пневмоэнцефалографией накануне на ночь назначают очистительную клизму. Вечером и утром дают фенобарбитал в дозе, соответствующей возрасту. Утром делают клизму из 2% раствора хлоралгидрата (детям до 1 года--10--15 мл, затем прибавляя по 5 мл на год жизни, но не более 50--60 мл детям старшего возраста).

В некоторых случаях детям младшего возраста вместо хлоралгидратной клизмы дают наркоз. Взрослым и детям старшего возраста пневмоэнцефалографию производят в положении сидя с несколько наклоненной кпереди головой и согнутыми в коленных и тазобедренных суставах ногами. Выполняют обычную люмбальную пункцию двумя иглами между остистыми отростками позвонков (L2 - L3 и L4 - L5). Через нижнюю иглу выводится цереброспинальная жидкость, через верхнюю вводится воздух. После измерения давления цереброспинальной жидкости медленно с помощью мандрена выпускают ее из нижней иглы и собирают ее в специальную градуированную пробирку для измерения общего количества. Для предотвращения ликвородинамических нарушений жидкость выводят дробными порциями. После выведения 5--10 мл жидкости медленно вводят 10--15 мл воздуха, затем вновь выводят жидкость и вводят воздух; повторяют это в указанной последовательности до 3--4 раз. Цереброспинальной жидкости выводят на 10--20 мл меньше, чем вводят воздуха. Детям старшего возраста вводят до 70--80 мл воздуха, младшим -- до 40--50 мл, взрослым -- 100-120 мл.

Детям раннего возраста пневмоэнцефалографию можно производить в горизонтальном положении их тела одной иглой. Берут первую порцию цереброспинальной жидкости (3-4 мл) и через ту же иглу медленно вводят 7--10 мл воздуха, затем все повторяют. Во время пневмоэнцефалографии для равномерного распределения воздуха по субарахноидальным пространствам и полостям голову ребенка сгибают J кпереди, затем кзади, налево и направо.

Пневмоэнцефалографию без выведения цереброспинальной жидкости производят в случаях высокого внутричерепного давления, обусловленного объемным процессом, или при подозрении на гематому после черепно-мозговой травмы. Больного следует усадить перед рентгеновским экраном в вертикальном положении. Производят люмбальную пункцию и, не выпуская цереброспинальной жидкости, вводят по 1 мл воздуха в течение минуты -- всего 5--7 мл. Затем делают рентгеновские снимки, после чего вновь медленно вводят 6--8 мл воздуха и вновь делают снимки. Всего можно вводить до 25 мл воздуха. Обычно делают четыре рентгеновских снимка.

Во время производства пневмоэнцефалографии может возникнуть головная боль разной интенсивности; иногда появляются тошнота, рвота. При рвоте подкожно вводят кофеин. Если возникают побледнение, оглушенное состояние, аритмия пульса и нарушение дыхания, то пневмоэнцефалографию прекращают. Больному дают кислород и вводят кордиамин. В течение первых 3--5 дней после пневмоэнцефалографии могут наблюдаться головная боль, сонливость, повышение температуры до 39° С. В этих случаях применяют дегидратационную терапию (мочегонные препараты -- парентерально, гипертонические растворы внутривенно), антипиретики (амидопирин, анальгин внутрь и внутримышечно).

Показания к пневмоэнцефалографии: опухоли, абсцессы, кисты, туберкуломы, гуммы, эхинококки; эпилепсия, особенно травматическая; последствия воспалительных процессов головного мозга и его оболочек (арахноидит) без симптомов окклюзии ликворных путей.

Противопоказания к пневмоэнцефалографии: блокада ликвороносных путей (при которой пневмоэнцефалография может привести к тяжелым осложнениям вследствие вклинения стволового отдела мозга в большое затылочное отверстие или отверстие мозжечкового намета); локализация опухоли и других патологических процессов в задней черепной ямке; окклюзионная форма гидроцефалии; опухоли височной доли; повышение внутричерепного давления с вторичными симптомами смещения ствола головного мозга; резкое снижение зрения (0,1 и ниже).

Вентрикулография основана на введении воздуха или контрастных препаратов непосредственно в желудочки мозга. На краниограммах получается изображение только желудочков мозга.

Ангиография -- рентгенография сосудов мозга после введения в них контрастного вещества (рис. 64). Ангиография является важным диагностическим методом исследования. Цель ангиографии -- уточнить локализацию патологического очага, выяснить его природу и характер. При помощи ангиографии диагностируются различные сосудистые поражения головного мозга, аномалии развития мозговых сосудов, ангиомы, аневризмы, опухоли. Сущность метода заключается в том, что в артериальное русло вводят контрастное вещество (торотраст, диотраст, уротраст, верографин и др.), которое в момент прохождения по сосудам делает их видимыми на краниограмме. Ангиография позволяет изучать изображение артерий, вен, венозных синусов, их расположение, просвет, состояние коллатерального кровообращения, скорость прохождения контрастного вещества.

Серийная рентгенография позволяет уловить несколько этапов прохождения контрастного вещества через сосудистую систему головного мозга. На первой ангиограмме фиксируется проекция артерий, на второй -- капилляров, на третьей -- вен и венозных синусов. Снимки обычно делают в двух проекциях -- профильной и фасной.

Нормальные артериограммы характеризуются определенным сосудистым рисунком. Следует учитывать анатомо-физиологические особенности сосудистой системы новорожденного: калибр артерий у него больше калибра вен. У детей младшего возраста он равен 1:1, у детей старшего возраста и взрослых отношение калибров составляет 1:2

Среди патологических изменений при ангиографии наиболее часто обнаруживаются смещение сосудов, их выпрямление, изменение формы и калибра, новообразования сосудов. Смещение сосудов отмечается при опухолях, абсцессах, кисте, туберкулеме. По мере роста эти образования смещают сосуды мозга. В одних случаях наблюдается выпрямление обычного сосудистого изгиба, в других, наоборот, он выражен больше. Изменения и смещения сосудов зависят от места расположения, направления роста и размера объемного образования. Так, при опухолях лобной доли характерно сдавление ветвей передней и средней мозговых артерий. При опухолях височной доли чаще бывает смещение и выпрямление средней мозговой артерии. Опухоли теменной доли, расположенные парасагиттально, меняют направление ветвей передней мозговой артерии, конвекситальные -- средней мозговой артерии. Диффузное выпрямление сосудов свидетельствует о наличии резкой внутренней гидроцефалии. Ограниченное выпрямление сосудов чаще встречается при опухолях, кистах.

Новообразование сосудов на краниограммах проявляется расширением просвета сосудов и патологическим развитием сети коллатералей. Эти изменения наблюдаются чаще при опухолях оболочек головного мозга. Наиболее типичны извитые, наподобие петлистого клубка, мелкие сосуды, напоминающие голову медузы. Одновременно отмечается значительное расширение вен диплоэ. Изменение формы сосудов, которое может быть связано с повреждением или заболеванием сосудистой стенки, обнаруживают при аневризмах и ангиомах.

При каротидной ангиографии контрастное вещество вводят в сосудистое русло общей сонной артерии или раздельно наружной и внутренней сонных артерий на стороне очага. Существуют два метода введения: закрытый пункционный (транскутанный), т. е. путем пункции сосудов через кожу, и открытый, при обнажении артерий хирургическим путем.

В детской практике, чаще всего применяют закрытый пункционный метод. Детям младшего возраста ангиографию производят под наркозом через маску или интратрахеально, старшим детям и взрослым под местным обезболиванием. В артериальное русло вводят контрастное вещество торотраст в дозе, соответствующей возрасту, т. е. 10--15 мл. Момент введения контрастного вещества является чрезвычайно важным, обеспечивающим успех ангиографии. Он должен быть согласован во времени с производством снимков. Все количество контрастного вещества непрерывно вводят со скоростью примерно 3 мл в минуту. После введения 2/3 всего количества контрастной массы производят первый снимок, при этом продолжают вводить контрастное вещество. Через 2 с делают второй снимок, через 2--3 с -- третий. После проведения ангиографии назначают постельный режим в течение 3--5 дней. К тяжелым, но очень редким осложнениям при ангиографии относятся преходящие парезы, параличи, кратковременные судороги.

Показания к ангиографии: опухоли, абсцессы, кисты, туберкулемы мозга, аневризмы и врожденные пороки развития мозговых сосудов разного происхождения, поздний период черепно-мозговой травмы, когда имеется смещение сосудов вследствие Рубцовых изменений с образованием кист.

Противопоказания к ангиографии: общее тяжелое состояние ребенка, опухоли желудочков мозга.

Для топической диагностики заболеваний спинного мозга и его оболочек применяют контрастную миелографию. Сущность метода заключается в определении блокады подпаутинного пространства спинного мозга путем введения в большую цистерну с помощью субокципитальной пункции различных контрастных веществ -- майодила и др. В последнее время успешно внедрена в практику изотопная миелография (133Хе). С помощью миелографии можно определить уровень поражения спинного мозга, дифференцировать опухолевые заболевания от других поражений спинного мозга. В детской практике миелографию применяют редко.

Компьютерная томография -- один из наиболее современных методов исследования в неврологии. Основу компьютерного томографа составляет аппарат, в котором узкий пучок рентгеновского излучения, направленный на больного, регистрируется после прохождения через ткани высокочувствительным прибором, определяющим поглощение излучения. Голову больного (или другую часть тела) помещают между излучателем и регистратором и аппарат делает полный оборот вокруг оси тела, фиксируя изменения поглощения рентгеновских лучей последовательно на всех стадиях вращения.

Данные обрабатываются компьютером, который воссоздает на дисплее картину среза (рис. 65). При компьютерной томографии разрешающая способность аппарата такова, что он «видит» не только костные структуры, но и мягкие ткани, например, дифференцирует ядерные образования и проводящие пути мозга, желудочковую систему и т. п. Аппарат может делать до 40 срезов с интервалом в 2--3 мм, после чего в компьютере закладывается полная информация о внутричерепных структурах, и он может дать изображение любого произвольного поперечного, продольного или косого сечения мозга.

С помощью компьютерной томографии можно обнаружить незначительные изменения плотности мозга (опухоль, инсульт, гематома, киста, отек, абсцесс, атрофия и т. п.). В неврологической клинике может иметь значение также исследование глазниц, придаточных пазух, образований шеи, мышц конечностей. Компьютерную томографию можно сочетать с контрастной ангиографией, исследуя состояние мозговых сосудов на срезах.

ЭЛЕКТРОФИЗИОЛОГИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Исследование электровозбудимости нервно-мышечного аппарата.

Электровозбудимость определяют гальваническим и фарадическим током. При раздражении током мышцы или нерва, идущего к данной мышце, возникает мышечное сокращение. Раздражения осуществляют с определенных участков -- двигательных точек. При раздражении фарадическим током возникает тетаническое сокращение мышцы, которое продолжается в течение всего времени прохождения тока. При раздражении гальваническим током мышца сокращается только в момент его замыкания и размыкания; сокращение происходит очень быстро, молниеносно, причем катодозамыкательное сокращение больше, чем анодозамыкательное (КЗС > АЗС).

Количественные изменения электровозбудимости проявляются в снижении или повышении пороговой силы раздражения. Так, при некоторых мышечных заболеваниях (миопатия) порог возбудимости повышается, и для получения мышечного ответа требуется ток значительной силы; при центральных параличах порог электровозбудимости снижается, небольшие по силе тока раздражения вызывают мышечное сокращение. При денервации мышцы в ней развивается дегенеративный процесс, мышечные волокна погибают, замещаются жировой и соединительной тканью. Электрическая реакция пораженных мышц качественно изменяется, возникает реакция перерождения (дегенерации): мышца не сокращается при раздражении фарадическим током, при раздражении гальваническим током возникает медленное «червеобразное» сокращение, причем анодозамыкательное сокращение становится больше катодозамыкательного (АЗС>КЗС). При раздражении нерва мышечного сокращения нет. Такое состояние электровозбудимости наступает на 12--15-й день после перерыва нерва или гибели клетки переднего рога и называется полной реакцией перерождения (РП).

Частичная РП возникает при неполном поражении периферического двигательного нейрона и характеризуется ослаблением возбудимости нервно-мышечного аппарата при раздражении фарадическим и гальваническим током. При раздражении гальваническим током сокращение мышц замедленное. Частичная реакция перерождения указывает на обратимость дегенеративных процессов в мышце. При длительной полной денервации мышцы (свыше 12 мес) в ней развиваются необратимые дегенеративные процессы, мышечная ткань заменяется жировой и соединительной, отсутствует реакция мышцы на раздражение фарадическим и гальваническим током -- полная утрата электровозбудимости.

Качественные изменения иного характера происходят при миотонии и миастении. При миотонии наблюдается так называемая миотониче-кая реакция: раздражение мышцы сопровождается длительным сокращением, мышца медленно расслабляется. Для миастении характерна патологическая «утомляемость» мышцы. Каждое последующее мышечное сокращение сопровождается повышением порога возбудимости. Для получения эффекта требуется все большая сила тока, что связано с истощением сократительной способности мышц.

Хронаксиметрия. Для более тонкого исследования функционального состояния нервно-мышечного аппарата используется хронаксиметрия. При хронаксиметрии учитывают не только силу тока, но и время его прохождения. Хронаксиметрию проводят с помощью специальных приборов -- хронаксиметров. Сначала определяют реобазу, т. е. минимальную силу постоянного тока, который при замыкании катода вызывает сокращение мышцы.

Хронаксией называется минимальное время, необходимое для вызывания сокращения при действии на нерв или мышцу током, равным по силе удвоенной реобазе.

В норме у мышцы и иннервирующего ее нерва одинаковая хронаксия (закон изохронизма нерва и мышцы). Все мышцы одной и той же функции (синергисты) в одном и том же сегменте имеют одинаковую, а мышцы-антагонисты -- разную хронаксию. У проксимально расположенных мышц более короткая хронаксия, чем у дистальных.

В норме хронаксия различных мышц составляет от 0,0001 до 0,001 с. При периферических параличах хронаксия увеличивается, что может иметь значение для определения характера процесса. При восстановлении функции постепенно восстанавливается и хронаксия. При центральных параличах хронаксия укорачивается, усиливается расхождение в показателях хронаксии сгибателей и разгибателей на руках и уменьшается разница в цифровых показателях на ногах.

Может быть определена хронаксия не только эфферентных, но и афферентных систем: кожной чувствительности, оптической системы, вестибулярного аппарата. Чувствительная хронаксия позволяет судить о функциональном состоянии чувствительных анализаторов.

Электромиография -- метод регистрации колебаний электрических потенциалов мышц -- имеет большое значение в диагностике нервно-мышечных заболеваний. Электромиограмма (ЭМГ) отражает электроактивность, возникающую при возбуждении двигательных окончаний и мышечных волокон. Биотоки усиливаются в миллион и более раз, после чего записываются осциллографами в виде кривых.

Электромиографию производят при различных состояниях мышц: при расслаблении, при рефлекторных изменениях тонуса (во время напряжения других мышц, при эмоциональном напряжении, глубоком вдохе) и при произвольных сокращениях.

Отведение мышечных потенциалов осуществляется с помощью электродов: игольчатых (погружаемых в мышцу и регистрирующих биоэлектрические потенциалы отдельных мышечных волокон) и поверхностных. Поверхностные электроды регистрируют суммарную электрическую активность от многих мышечных волокон. При анализе электромиограмм учитываются величина амплитуд, частота колебаний потенциалов, а также общая структура осциллограмм (монотонность осцилляции или расчлененность на залпы, форма, длительность и частота залпов и т. п.).

У здорового человека в покое (при локальном отведении игольчатыми электродами) колебания биоэлектрических потенциалов не увеличиваются (на суммарной ЭМГ наблюдаются низкоамплитудные слабые колебания до 10--15 мкВ). Рефлекторное повышение тонуса сопровождается небольшим усилением электрической активности (до 50--100 мкВ). При произвольном напряжении появляются частые высокоамплитудные колебания (1000-- 2000 мкВ).

ЭМГ имеют разную картину при двигательных нарушениях, обусловленных поражением центральной и периферической нервной систем и мышечного аппарата. Изменения биоэлектрической активности мышц связаны с топикой, тяжестью и стадией патологического процесса. Электромиография помогает в диагностике центральных, сегментарных (переднероговых и переднекорешковых), невритических и миопатических двигательных нарушений, позволяет обнаружить типичные нарушения биоэлектрической активности на ранней стадии заболевания при клинически мало выраженных симптомах, а также дает возможность наблюдать за динамикой процесса и эффективностью лечения (рис. 66).

При периферическом параличе с полной дегенерацией нервных и мышечных волокон потенциалы исчезают («биоэлектрическое молчание»). При поражении переднероговых структур спинного мозга отмечаются уменьшение частоты осцилляции, ритмичные потенциалы фасцикуляций с амплитудой до 300 мкВ и частотой 5--35 Гц («ритм частокола»).

При поражении периферических нервов наблюдается снижение амплитуды осцилляции, а при тяжелом поражении -- полное отсутствие биоэлектрической активности в денервированных мышцах. Могут выявляться потенциалы фибрилляций, чаще неритмичных, с амплитудой до 200 мкВ. Для первично-мышечного поражения характерны снижение амплитуды биопотенциалов, укорочение длительности одиночного потенциала и увеличение процента полифазных потенциалов (в норме до 15-20%).

При центральных парезах снижается амплитуда колебаний (во время произвольных движений), в то же время при рефлекторных повышениях мышечного тонуса амплитуда резко увеличивается и появляются частые асинхронные колебания. На ЭМГ можно регистрировать специфические изменения при миотонии и миастении. Так, обнаруживается характерная «миотоническая задержка» -- прогрессирующее снижение амплитуд колебаний. Экстрапирамидные гиперкинезы проявляются на ЭМГ залпами частых высокоамплитудных колебаний, возникающих на фоне низковольтной кривой.

Электронейромиография -- комплексный метод исследования, включающий:

1) регистрацию и анализ параметров вызванных потенциалов (ВП) мышцы и нерва (латентный период, форма, амплитуда и длительность ВП);

2) определение числа функционирующих двигательных единиц (ДЕ);

3) определение скоростей проведения импульса (СПИ) по двигательным и чувствительным волокнам периферических нервов;

4) подсчет мотосенсорного и краниокаудального коэффициентов, коэффициентов асимметрии и отклонения от нормы.

В основе электронейромиографического метода лежит применение электрической стимуляции нерва с последующим анализом параметров вызванных потенциалов, регистрируемых с иннервируемой мышцы или с самого нервного ствола. Стимуляция нерва в двух точках, находящихся на определенном расстоянии друг от друга, позволяет вычислить время, в течение которого волна возбуждения проходит между точками стимуляции. Таким образом, оказывается возможным определить скорость проведения импульса по волокнам нерва.

Метод определения СПИ применим для любого доступного исследованию периферического нерва, однако в практике электронейромиографии чаще исследуют срединный, локтевой, большеберцовый, малоберцовый, реже локтевой и седалищный нервы (табл. 5). Топография некоторых нервов затрудняет стимуляцию их в двух точках. В этих случаях косвенное представление о СПИ дает измерение латентного периода М-ответа при однократном раздражении с одной точки. Таким образом исследуют мышечно-костный нерв руки, плечевое сплетение, бедренный нерв, лицевой, межреберный нервы (рис. 67).

М-ответ -- вызванный потенциал мышцы, являющийся суммарным синхронным разрядом двигательных единиц мышцы в ответ на электрическое раздражение нерва. Обычно М-ответ регистрируется с помощью накожных отводящих электродов, которые более объективно, чем игольчатые, отражают суммарную активность мышцы. Пластины электродов помещают поперечно расположению волокон. При изучении М-ответа обращают внимание на интенсивность порогового раздражения, форму вызванного потенциала, его амплитуду и длительность. Форма М-ответа зависит от ряда факторов. При биполярном отведении М-ответ имеет негативную и позитивную фазы соответственно прохождению волны возбуждения над обеими электродными пластинками.

Н-рефлекс является моносинаптическим рефлекторным ответом мышцы при электрическом раздражении нерва и отражает синхронный разряд значительного числа двигательных единиц. Название «Н-рефлекс» соответствует первой букве фамилии Hoffmann, впервые описашего этот ВП в 1918 г. Н-рефлекс является эквивалентом ахиллова рефлекса, в норме определяется только в мышцах голени. Однако у детей раннего возраста при незаконченной миелинизации пирамидной системы моносинаптический рефлекс вызывается также в мелких мышцах кисти и стоп. В отличие от М-ответа, обусловленного раздражением двигательных волокон нерва, Н-рефлекс вызывается раздражением чувствительных волокон. Импульс возбуждения направляется ортодромно к спинному мозгу, а затем по двигательным волокнам -- к мышцам.

Таблица 5. Расположение стимулирующих и отводящих электродов

Исследуемый нерв

Расположение стимулирующих электродов -- точка раздражения

Расположение отводящих электродов

проксимальная

дистальная

Срединный

На 3--5 см выше локтевой ямки, кнутри от плечевой артерии

На 2 см проксимальнее поперечной связки запястья в середине между сухожилиями длинной ладонной мышцы и лучевого сгибателя кисти

Над центром возвышения большого пальца

Локтевой

Над углублением в локтевой кости (около медиального мыщелка)

На 2 см проксимальнее поперечной связки запястья (несколько медиальнее сухожилия локтевого сгибателя кисти)

Над латеральным краем возвышения мизинца

Седалищный

В ягодичной области между большим вертелом бедра и седалищным бугром или прямо под этой точкой, на линии, идущей вниз к верхней части надколенной ямки

Кзади от медиальной лодыжки

Над мышцей, отводящей V палец (ответ с короткого разгибателя пальцев регистрируется только при стимуляции малоберцового нерва)

Задний большеберцовый

В центре подколенной ямки

Тоже

Над основанием I и V метатарзальной кости с подошвенной стороны стопы

Малоберцовый

Кнутри от латерального края подколенной ямки (медиальнее головки малоберцовой кости)

Кнаружи от сухожилия длинного разгибателя пальцев, несколько ниже уровня латеральной лодыжки (дистальнее и спереди от головки малоберцовой кости)

Над коротким разгибателем пальцев стопы (наиболее выступающая часть мышцы)

Лицевой

Над околоушной железой, кпереди от мочки уха

Над мимическими мышцами: а) лобной мышцей, над бровью; б) круговой мышцей глаза у наружного края глаза; в) круговой мышцей рта у yгла рта

Плечевое сплетение

Раздражение сплетения в области шеи

Над мышцами плечевого пояса: а) дельтовидной; б) трехглавой; в) двуглавой; г) надостной; д) подостной

Мышечно-кожный

В подмышечной впадине, кзади от передней складки

Над брюшком трехглавой мышцы плеча

Бедренный

Вдоль бедренного нерва на его пути из-под паховой связки вниз по передней поверхности бедра

Над четырехглавой мышцей бедра (на 14--16 см дистальнее стимулирующего электрода)

При постепенном увеличении интенсивности раздражения нерва выявляется своеобразное соотношение в динамике изменения амплитуды рефлекторного (Н-рефлекс) и прямого (М-ответ) ответа от мышцы. Н-рефлекс появляется при силе раздражения, подпороговой для М-ответа. По мере возрастания амплитуда Н-рефлекса достигает максимума и начинает уменьшаться, а амплитуда М-ответа увеличивается.

При силе раздражения, супрамаксимальной для М-ответа, Н-рефлекс, как правило, уже не определяется. При электронейромиографическом исследовании изучаются следующие параметры Н-рефлекса: латентность, форма, амплитуда, длительность. При фоторегистрации Н-рефлекса необходимо фиксировать последовательно изменяющееся соотношение Н- и М-ответов.

Потенциал действия (ПД) нерва обусловлен электрической активностью волокон периферических нервов в ответ на электрическое раздражение нервного ствола. ПД нерва является суммарным потенциалом действия, складывающимся из потенциалов отдельных нервных волокон разного диаметра и степени миелинизации.

ПД афферентных волокон регистрируется кольцевыми пальцевыми электродами при стимуляции ствола нерва или, наоборот, со ствола нерва при стимуляции концевых его ответвлений. Кроме того, ПД эфферентных волокон можно регистрировать при избирательной стимуляции двигательных волокон нерва, изолированно от чувствительных волокон. В клинической практике исследование ПД двигательных волокон обычно не проводится в связи с его малой амплитудой, поэтому, говоря о ПД нерва, имеют в виду ПД чувствительных волокон. При изучении ПД нерва обращают внимание на интенсивность порогового раздражения, форму и амплитуду вызванного потенциала. Порог раздражения (порог ПД нерва) обычно ниже порога М-ответа. При постоянном наращивании силы раздражения амплитуда ПД нерва увеличивается, а затем может несколько уменьшаться при раздражении, супрамаксимальном М-ответу. Повышение порога раздражения наблюдается при денервационных процессах. ПД нерва обычно двухфазный, негативная фаза непрерывно переходит в позитивную.

Двигательная единица (ДЕ) является элементарной частицей нервно-мышечного аппарата. Термин «двигательная единица» введен Шеррингтоном для обозначения комплекса, состоящего из двигательной нервной клетки, ее аксона и группы мышечных волокон, иннервируемых этим аксоном.

Метод определения числа функционирующих ДЕ в мышцах thenar основан на феномене дискретного ступенчатого нарастания амплитуды мышечного ответа (М-ответа) при плавном постепенном увеличении силы раздражающего тока. Дискретность увеличения амплитуды объясняется включением в двигательный акт все новых ДЕ. Количество ДЕ определяется по формуле:

n = А/а,

где А -- максимальная амплитуда М-ответа; а -- амплитуда отдельной ДЕ; n-число ДЕ.

Уменьшение числа функционирующих ДЕ наблюдается при поражении центрального и периферического двигательных нейронов. При миодистрофии уменьшение количества ДЕ менее значительно.

Изучение вызванных потенциалов мышц, полученных повторной стимуляцией нерва, направлено прежде всего на выявление нарушений нервно-мышечной синаптической передачи и патологической нервно-мышечной утомляемости. О наличии нервно-мышечного утомления судят по снижению амплитуды М-ответа при повторной электрической стимуляции нерва. Диагностическим критерием миастенического синдрома является наличие феномена декремента (прогрессирующего снижения амплитуды М-ответа) при частоте стимуляции 30--50 имп/с.

При характеристике декремента обращают внимание на частоту и длительность стимуляции, вызвавшей его, а также на глубину декремента (степень снижения амплитуды М-ответа от исходной, выраженная в процентах). При исследовании нервно-мышечной утомляемости используют также фармакологические тесты.

Методика определения СПИ по периферическим нервам основана на сопоставлении латентных периодов ВП при электрическом раздражении двух точек нерва, находящихся на некотором расстоянии друг от друга. СПИ по периферическим нервам вычисляется по формуле.

v = S/T,

где v --скорость проведения импульса, м/с; S -- расстояние между проксимальной и дистальной точками раздражения нерва, мм; T-- разность латентных периодов (ПД нерва -- для чувствительных, М-ответа--для двигательных волокон), мс.

Некоторые исследователи используют метод определения СПИ по чувствительным волокнам периферических нервов путем регистрации вызванных потенциалов действия соматосенсорной зоны коры больших полушарий при стимуляции периферического нерва на разных уровнях, а также метод, основанный на определении разности латентных периодов Н-рефлекса.

Величина СПИ зависит от многих условий и прежде всего от диаметра нервного волокна, степени его миелинизации, температуры, кислотно-щелочного состояния, электролитного обмена в окружающей нерв ткани, возраста обследуемого, времени суток, лекарственных воздействий. СПИ неодинакова в разных сегментах нерва. Доказано, что СПИ прямо пропорциональна диаметру волокна. Выраженная в метрах в секунду, СПИ в 6 раз превышает диаметр волокна, выраженный в микрометрах. Указанная закономерность не является абсолютной в связи с тем, что ствол нерва обычно состоит из волокон разного диаметра и разной степени миелинизации.

Электронейромиография находит все более широкое применение в клинике нервных болезней. Метод наиболее информативен в диагностике заболеваний, сопровождающихся поражением периферических нервов (мононевриты, полиневриты, невральная амиотрофия, полиневропатии при эндокринных и коллагеновых заболеваниях, при которых наблюдается снижение СПИ по двигательным и чувствительным волокнам периферических нервов, снижение амплитуд вызванных потенциалов мышцы и нерва). В последние годы электронейромиография нашла применение также при изучении супрасегментарных пирамидных и экстрапирамидных поражений.

Электроэнцефалография -- регистрация биотоков мозга. Функционирование центральной нервной системы сопровождается биоэлектрическими процессами. При возбуждении в нервных клетках ионы перераспределяются, возникает разность потенциалов между заряжающимися электроотрицательно участками ткани. Разность потенциалов, возникающих в тканях мозга, очень мала (миллионные доли вольта), поэтому их регистрация и измерение возможны только при помощи высокочувствительных аппаратов -- электроэнцефалографов, усиливающих и записывающих биопотенциалы мозга. В настоящее время применяются многоканальные электроэнцефалографы с перьевой записью. Отведение биотоков производится посредством серебряных и оловянных электродов, укрепляемых на коже различных отделов головы: лобных, височных, теменных, затылочных (рис. 68). В анестезиологической практике для контроля за уровнем наркоза во время операции чаще применяются игольчатые электроды. Существует монополярный способ записи ЭЭГ (активный электрод помещают в любой точке головы, а другой, пассивный, устанавливают на мочке уха) и биполярный (применение двух электродов, установленных в различных отделах головы -- лобно-затылочные, лобно-височные, височно-затылочные и другие отведения). Исследование проводят в экранированной от помех свето- и звуконепроницаемой камере. Обследуемый должен максимально расслабиться. Случайные мышечные движения мешают исследованию, создавая дополнительные биотоки.

Для установления локализации патологического очага и выявления скрытых изменений применяют различные функциональные нагрузки (действие света, звука, гипервентиляции, умственной нагрузки и т. д.). Визуальный анализ электроэнцефалограммы (ЭЭГ) обнаруживает в ней наличие волн, различающихся по частоте колебаний, амплитуде (вольтажу), форме (синусоидальная, заостренная), регулярности, выраженности реакции на внешние раздражения.

Основными ритмами ЭЭГ здорового взрослого человека в состоянии покоя и бодрствования являются альфа- и бета-ритмы. У альфа-волн частота 8--12 колебаний в секунду с амплитудой 40--70 мкВ. Альфа-ритм регистрируется преимущественно над затылочными долями. При подаче светового раздражения у исследуемого наблюдается депрессия альфа-ритма.

Формирование ЭЭГ, характерной для взрослого, происходит постепенно. Первые вспышки медленных волн (частотой 0,3--0,5 в секунду) регистрируются на фоне «биоэлектрического молчания» мозга у эмбриона 1/4 мес. Постоянная биоэлектрическая активность появляется на 7--8-м месяце внутриутробного развития. К этому времени постепенно промежутки между вспышками медленных волн становятся меньше и полностью исчезают, частота волн увеличивается, достигая 6--8 в секунду. Максимально выражены биоэлектрические потенциалы в передних отделах мозга, преимущественно в двигательных прецентральных зонах коры больших полушарий. У новорожденных отсутствует биоэлектрическая активность в затылочных областях мозга; в прецентральных областях ритм колебаний равен 2--5 в секунду с примесью частот 10--13 периодов в секунду.

К 6-месячному возрасту возникают ритмичные колебания потенциалов в затылочных областях мозга, сначала медленные (3--4 колебания в секунду), а затем изменяющиеся по частоте, выраженности и амплитуде, в результате чего постепенно формируется альфа-активность, характерная для взрослого человека. Формирование альфа-активности в затылочных долях мозга завершается в возрасте 8--10--14 лет. У людей, потерявших зрение в раннем детском возрасте, альфа-ритм на ЭЭГ обычно не регистрируется.

Весь процесс видоизменения ЭЭГ протекает в направлении от более медленных низкочастотных колебаний к быстрым высокочастотным. Сначала у детей формируется дельта-активность с частотой 2-*4 периода в секунду, затем она преобразуется в тета-активность (4--7 колебаний в секунду), а уже потом возникает альфа-ритм. Бета-частоты (18--20 колебаний в секунду) у детей обычно мало выражены. Дельта- и тета-активность, исчезнув после завершения формирования альфа-ритма, вновь появляется у взрослых лишь при некоторых патологических состояниях (в пубертатном периоде у детей возможно временное возобновление медленных волн -- так называемый пубертатный регресс).

Различные функциональные состояния мозга (возбуждение, покой, сонливость, глубокий сон) имеют свое характерное электроэнцефалографическое выражение. Возбуждение сопровождается появлением высокочастотных и низкоамплитудных колебаний. В покое преобладает альфа-активность. Переход к глубокому сну проявляется постепенным замедлением волн на ЭЭГ. Вначале могут еще наблюдаться периоды низкоамплитудных высокочастотных колебаний ^«веретена»), затем они становятся все более редкими и короткими, полностью исчезая при глубоком сне, характеризующемся высокоамплитудными дельта-волнами. Сон -- неоднородный процесс, имеющий сложную цикличность. Основные фазы сна (быстрый и медленный сон) имеют четкую электроэнцефалографическую характеристику.

При различных заболеваниях головного мозга нормальное течение электрических процессов оказывается нарушенным. На ЭЭГ наблюдаются дезорганизация нормальных ритмов и появление патологических волн. Локальные дельта- и тета-волны указывают на очаговый патологический процесс в головном мозге. Следует отметить, что у детей раннего возраста обычно не удается локализовать фокус патологической активности на ЭЭГ. Даже локальные изменения у детей в возрасте до 1 года имеют тенденцию к генерализованным, диффузным проявлениям при электроэнцефалографии.

Специфических изменений ЭЭГ, характерных только для определенного патологического процесса, не существует. Исключение составляет эпилепсия, для которой характерны наличие комплекса «пик-волна» (сочетание острой и медленной волны), отсутствие или дезорганизация альфа-ритма, медленные высокоамплитудные колебания. Проведение функциональных проб с нагрузкой (световые, звуковые раздражения, гипервентиляция и др.) в ряде случаев позволяет выявить скрытый патологический процесс или его инициальные фазы. Электроэнцефалографическая картина может иметь диагностическое значение при повторных исследованиях в сочетании с динамическим неврологическим наблюдением и учетом показателей других параклинических исследований.

РЕОЭНЦЕФАЛОГРАФИЯ

Принцип реоэнцефалографии заключается в регистрации изменений электрического сопротивления живых тканей при пропускании через них переменного тока высокой частоты. Электропроводимость тканей находится в зависимости от их кровенаполнения. Кровь, насыщенная ионами, является хорошим электропроводником, поэтому при пульсации мозговых сосудов электрическое сопротивление мозга падает, если сосуды расширены и полнокровны, и снижается, если они сужены. Регистрация этих периодических колебаний электрического сопротивления мозга под влиянием расширения или сужения мозговых сосудов -- реоэнцефалография -- позволяет косвенно судить о состоянии тонуса, об эластичности сосудов мозга, их способности к сужению и расслаблению, о величине кровенаполнения сосудов мозга, о состоянии сосудистой стенки, а также дает возможность выявлять асимметрию кровенаполнения в сосудистых бассейнах.

Реографическое исследование проводят с помощью реографа, который подключается к записывающему устройству--электроэнцефалографу или электрокардиографу. Реографические электроды накладывают на голову больного в различных положениях в зависимости от того, какие сосудистые бассейны исследуются. Например, для исследования бассейна внутренней сонной артерии (передняя и средняя мозговые артерии) электроды накладывают фронторетромастоидально (один электрод--на лоб, другой -- за ухо, на сосцевидный отросток).

Нормальная реоэнцефалограмма (РЭГ) представляет собой правильные, регулярные волны, внешне напоминающие пульсовые. В каждой реографической волне различают восходящую часть -- от начала волны до ее самой верхней точки, верхнюю точку -- вершину, нисходящую часть -- от вершины до конца волны. В норме вершина имеет относительно острый характер или слегка закруглена. На нисходящей части реографической волны регистрируется дополнительная дикротическая волна или зубец .

Для точной оценки реографических волн вводят следующие характеристики: альфа-время восходящей части волны, характеризующее степень растяжимости сосудистой стенки (в норме 0,06--0,11 с); бета-время нисходящей части волны, характеризующее эластичность сосудистой стенки (в норме 0,5--0,8 с). Амплитуда реографической волны отражает величину кровенаполнения сосудов мозга. Для количественной характеристики амплитуды введен показатель -- отношение величины амплитуды реографических волн к высоте калибровочного импульса в 0,1 Ом.

Альфа-время тем короче, чем выше эластичность сосудистой стенки. В детском возрасте оно наименьшее, с возрастом эластичность сосудов уменьшается и время восходящей части волны увеличивается. При цере-

Снижение эластичности стенок мозговых сосудов отражается на форме вершины. Сосуды, медленно расширяясь под давлением пульсовой волны, не могут затем сразу сократиться, в связи с чем вершина становится закругленной. Повышение сосудистого тонуса при артериальной гипертензии может также приводить к закругленности вершины. У детей при артериальной гипотонии вершина становится заостренной, катакрота быстро достигает изолинии. При венозном застое нарушается отток крови из полости черепа и катакрота реографических волн становится выпуклой, иногда не успевает вернуться к изолинии к моменту начала следующей волны (кровь медленно оттекает из мозговых сосудов).

Возникновение дикротического зубца связывают с возвращением кровяной волны, отраженной от стенок мозговых сосудов и затем от полулунных клапанов аорты. Чем выше тонус мозговых сосудов, тем быстрее отражается и возвращается обратно волна кровотока и тем ближе к вершине располагается дикротический зубец. При гипотонии дикротический зубец на катакроте находится ближе к изолинии.

Реоэнцефалографическое исследование позволяет изучать регионарное кровообращение, определять локализацию расстройств мозговой гемодинамики. В сочетании с другими клиническими и параклиническими методами реоэнцефалография помогает диагностике нарушений мозгового кровообращения.

УЛЬТРАЗВУКОВЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Ультразвуковые методы находят все более широкое применение в медицинской практике. С помощью ультразвуковой диагностической аппаратуры стали возможными исследование плотности тканей, определение границ тканей с разной плотностью. Предложены одномерная эхоэнцефалография, позволяющая выявить границы срединных структур мозга и их смещения, дополнительные полости или расширение желудочковой системы, и двухмерная, основанная на подвижной эхолокации с перемещением луча в направлении, перпендикулярном к его распространению. Двухмерная эхография осуществляется специальными сканирующими ультразвуковыми аппаратами, позволяющими получить изображение поперечного сечения, локализации, формы, размера и структуры обследуемого участка.

Эхоэнцефалографию можно применять также с целью диагностики сужения, расширения и пульсации сонных артерий. Благодаря использованию эффекта Допплера стало возможным с помощью эхоэнцефалографии получить сведения о скорости движения элементов крови (клетки крови служат подвижными отражателями ультразвука). Информация о циркуляции крови с помощью ультразвукового метода Допплера касается не только скорости кровотока, но и его направления, что имеет значение в диагностике синдромов «обкрадывания» с ретроградным кровотоком по сонным и вертебральным артериям.

Одномерная эхоэнцефалография. Для обнаружения объемных патологических процессов в головном мозге используется эхоэнцефалография. Метод основан на том, что направленный ультразвуковой луч, проходя через ткани черепа и мозга, частично отражается от границ сред, обладающих различными акустическими плотностями. Отраженные волны улавливаются и регистрируются. Измерив время от подачи сигнала на объект до его приема, можно определить расстояние до структур, от которых получаются отраженные волны. Срединные структуры мозга обладают большой отражательной способностью, поэтому по степени смещения срединных структур можно судить о наличии объемных процессов в головном мозге. В норме в связи с асимметрией черепа и неточным наложением электродов возможно смещение М-эха не более чем на 2 мм. Большее смещение может быть обусловлено опухолью мозга, абсцессом, оболочечной или паренхиматозной гематомой, локальным отеком (рис. 70).

Эхоэнцефалография может представить сведения о степени расширения III желудочка (при гидроцефалии, полной или частичной окклюзии водопровода мозга).

...

Подобные документы

  • Диагностическое исследование головного и спинного мозга. Применение компьютерной и магнитно-резонансной томографии в неврологии. Развитие визуализирующих технологий в нейрорентгенологии. Проведение перфузионных исследований. Ангиография и миелография.

    презентация [638,3 K], добавлен 06.09.2015

  • Классификация нарушений мозгового кровообращения. Противопоказания к проведению тромболитической терапии. Методы лечения аневризм. Дифференциальная диагностика острых нарушений мозгового кровообращения по Е.И. Гусеву. Симптомы и синдромы в неврологии.

    курсовая работа [891,6 K], добавлен 06.10.2011

  • Вклад клинической неврологии в изучение мозга. Развитие строения коры в эмбрионе. Связь фундаментальной нейронауки и практической неврологии. Особенности нейрональных ритмов. Значение исследований в фундаментальной науке для лечения серьезных заболеваний.

    реферат [105,6 K], добавлен 06.11.2009

  • Острые нарушения мозгового кровообращения. Транзиторные ишемические атаки. Кровоизлияние в мозг, геморрагический и ишемический инсульт, болезнь Альцгеймера: этиология, патогенез, клиника, диагностика и лечение. Нарушения спинномозгового кровообращения.

    лекция [79,1 K], добавлен 30.07.2013

  • Причины травм позвоночника. Виды воздействий, приводящих в повреждению позвоночника, их характер и последствия. Формы травматических поражений спинного мозга. Симптомы травм позвоночника и спинного мозга. Доврачебная помощь при переломе позвоночника.

    презентация [2,7 M], добавлен 01.05.2016

  • Организация неврологического отделения детской городской больницы. Острые нарушения мозгового кровообращения. Оценка качества оказываемой медицинской профилактической помощи в неврологическом отделении. Кадровый состав неврологического отделения.

    контрольная работа [36,5 K], добавлен 19.11.2013

  • Методы лучевой диагностики в неврологии и нейрохирургии. Рентгеноконтрастные методики исследования головного мозга. Магнитно-резонансная и компьютерная томография. Лучевая семиотика повреждений черепа и головного мозга. Переломы костей свода черепа.

    презентация [1,3 M], добавлен 29.11.2016

  • Изучение анатомии спинного мозга как отдела центральной нервной системы. Описание системы кровоснабжения спинного мозга. Состав клинико-нозологических вариантов сирингомиелитического синдрома. Дифференциальная диагностика различных травм позвоночника.

    презентация [607,2 K], добавлен 20.06.2013

  • Строение и функции проводящих путей головного и спинного мозга. Виды чувствительности. Краткая история учения о локализации поражения в нервной системе (на примере афазии). Клинический диагноз и локализация поражения. Методы топической диагностики.

    презентация [1,8 M], добавлен 06.04.2016

  • Изучение этиологии, динамики и классификации инсультов – острых нарушений мозгового кровообращения, которые приводят к стойким нарушениям мозговой функции. Преходящие нарушения мозгового кровообращения. Гипертонический церебральный криз. Инфаркт мозга.

    презентация [2,5 M], добавлен 12.12.2011

  • Клинические проявления перинатальной патологии нервной системы ребенка. Виды черепно-мозговой грыжи, особенности хромосомных синдромов. Характеристика наследственно-дегенеративных и инфекционных заболеваний детской нервной системы. Травмы головного мозга.

    реферат [427,2 K], добавлен 13.10.2011

  • Определение предмета неврологии. Клинические проявления основных симптомов и синдромов. Понятие о цереброспинальной жидкости. Строение головного и спинного мозга. Сухожильные рефлексы, нормальные и патологические. Понятие нейрона и рефлекторной дуги.

    презентация [530,2 K], добавлен 10.01.2013

  • Причины заболеваний нервной системы у детей. Травматические и токсические заболевания. Сосудистые заболевания головного и спинного мозга. Приобретенные и врожденные аномалии развития нервной системы. Черепно-мозговые и спинномозговые грыжи. Микроцефалия.

    презентация [3,8 M], добавлен 28.05.2016

  • Анатомия и классификация травм позвоночника и спинного мозга. Виды политравм спины. Методы дифференциальной диагностики травм позвоночника и спинного мозга. Тактика фельдшера на догоспиталиальном этапе при травмах. Стандарт оказания неотложной помощи.

    курсовая работа [774,2 K], добавлен 12.01.2016

  • Строение сосудистой системы спинного мозга. Этиология нарушений спинномозгового кровообращения. Симптомы ишемического спинального инсульта, его критические зоны. Диагностика и лечение заболевания. Геморрагические нарушения спинального кровообращения.

    презентация [430,0 K], добавлен 26.03.2015

  • Классификация травм головного мозга. Общие сведения о закрытых травмах головного мозга. Влияние травм головного мозга на психические функции (хронические психические расстройства). Основные направления психокоррекционной и лечебно-педагогической работы.

    реферат [15,2 K], добавлен 15.01.2010

  • Значение центральной нервной системы человека в процессе регулирования организма и его связи с внешней средой. Анатомическая структура спинного и головного мозга. Понятие серого и белого вещества, нервных центров, волокон и соединительнотканных оболочек.

    реферат [2,4 M], добавлен 19.01.2011

  • Онтогенез нервной системы. Особенности головного и спинного мозга у новорожденного. Строение и функции продолговатого мозга. Ретикулярная формация. Строение и функции мозжечка, ножек мозга, четверохолмия. Функции больших полушарий головного мозга.

    шпаргалка [72,7 K], добавлен 16.03.2010

  • Строение и функции позвоночника и спинного мозга. Классификация травм позвоночника и спинного мозга, их последствия. Методические приемы рефлекторной терапии. Комплексная реабилитация пациентов с последствиями повреждений позвоночника и спинного мозга.

    дипломная работа [2,2 M], добавлен 29.05.2012

  • Исследование строения мозгового отдела. Оболочки головного мозга. Характеристика групп черепно-мозговых травм. Открытие и закрытые повреждения. Клиническая картина сотрясения головного мозга. Раны мягких тканей головы. Неотложная помощь пострадавшему.

    презентация [2,9 M], добавлен 24.11.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.