Функтори віддзеркалень Кокстера для алгебр, породжених лінійно пов'язаними ортопроекторами, категорій зображень графів у категорії гільбертових просторів. Конструкція похідного колчана, яка використовується для розв'язання задач класифікації зображень.
- 4982. Функции алгебры логики
Элементы комбинаторики, перестановки, размещения, сочетания. Формульное задание элементарных функций алгебры логики. Принцип двойственности. Разложение булевой функции по переменным. Задачи и упражнения по алгебре логики. Минимизация булевых функций.
Вторжение математики в современную жизнь. Использование логарифмов в биологии. Процессы выравнивания в биологии. Логарифмы "на слуху" и в ухе. Пропорциональность величины ощущения логарифму величины раздражения. Отношение логарифмов к другим наукам.
Сущность и содержание понятия функций, их виды, графики. Использование функций для описания процессов, происходящих в технических устройствах и природных явлениях. Демонстрация связи работы технических приборов и явлений природы с функциональным анализом.
- 4985. Функции двух переменных
Множество точек в пространстве. Изучение функции двух переменных и способов её задания в плоскости. Правила нахождения пределов для переменных. Сравнение бесконечно малых уравнений с разным количеством аргументов. Анализ свойств непрерывности функции.
Понятие функции, ее график, история развития. Великие математики и их труды: Лейбниц, Бернулли, Эйлер, Лобачевский. Примеры функций, которые рассматриваются в школе: линейная, тригонометрическая и пр. График гармонического колебания, свободного падения.
- 4987. Функции и их вычисление
Вычисление пределов функций без использования правила Лопиталя. Нахождение производных функций с использованием формул и правил дифференцирования. Нахождение наибольшего и наименьшего значения функции на отрезке. Нахождение интервалов монотонности.
Рассмотрение теории функций комплексной переменной. Формулировка необходимого условия дифференцируемости функции комплексного переменного по условию Коши-Римана. Теорема Коши для многосвязной области. Формула среднего значения. Ряды, их виды.
Теория модулярных форм. Анализ соответствия между элементами конечных групп и модулярными формами, основанный на рассмотрении характеристических многочленов операторов. Проблема нахождения конечных групп на примере элементарных абелевых 2-групп.
Функция как математическое понятие, отражающее однозначную парную связь элементов одного множества с элементами из другого множества. Топология пространства арифметических векторов. Компактные множество и линейные отображения. Теорема Кантора и Бореля.
Определение и графическое изображение области допустимых значений заданной функции. Вычисление частных производных первого порядка, полного приращения и дифференциала функции. Механизма и основные этапы расчета наибольшего и наименьшего значения.
Теоремы о дифференцировании сложной функции двух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных. Интегрирование тригонометрических, рациональных функций, некоторых видов иррациональностей. Задача и теорема Коши.
Особенности декартовой системы координат в трехмерном пространстве. Понятие предела, непрерывность функции нескольких переменных. Свойства функций непрерывных в ограниченной замкнутой области. Определение частной производной функции нескольких аргументов.
Сущность и характерные особенности функции нескольких переменных, порядок расчета и анализа ее дифференциала. Определение частных производных. Применение дифференциала к приближенным вычислениям. Метод множителей Лагранжа и наименьших квадратов.
Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.
Область определения функции нескольких переменных. Частные производные функций нескольких переменных. Дифференциал функции нескольких переменных. Скалярные и векторные поля. Производная по направлению. Градиент дифференцируемого скалярного поля.
Частные производные функции нескольких переменных. Градиент функции, касательная плоскость и нормаль к поверхности. Экстремум функции нескольких переменных. Метод множителей Лагранжа. Решение задач нелинейного программирования с двумя переменными.
Ограниченные и замкнутые множества. Характеристика множеств в пространствах любого числа измерений. Анализ задач, приводящих к понятию функции нескольких переменных. Геометрический смысл производной. Предел, непрерывность и дифференцируемость функции.
Область определения функции двух переменных. Виды множеств точек. Понятия линии уровня, предела и непрерывности. Скорость изменения функции в данном направлении. Взаимосвязь градиента и производной. Свойство касательной плоскости и нормаль к поверхности.
- 5000. Функции одной переменной
Изучение формулы бесконечно убывающей геометрической последовательности. Способы задания функции одной переменной. Геометрический смысл понятия "предел". Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз.
- 5001. Функции одной переменой
Понятие функции одной переменной. Элементарные функции и их свойства. Табличный, аналитический и графический способы задания функции, область ее определения. Симметрия относительно начала координат. Примеры использования функций в области экономики.
Сущность перспективности математических моделей, учитывающих стохастическую неопределенность и нечеткость. Описание вероятностных множеств в смысле Hirota. Моделирование операций над нечеткими вероятностными множествами. Треугольные нормы и конормы.
Виды распределения, его законы. Дискретное и непрерывное распределение. Свойства случайных величин. Эмпирические функции распределения. Параметры функции нормального распределения. Вычисление выравнивающих частот кривой нормального распределения.
Построение полной системы инвариантов в задаче об аналитической классификации вырожденных элементарных особых точек на комплексной плоскости. Доказательство теоремы об основной секторальной нормализации седло-узловых особых точек векторного поля.
Полные и неполные матричные пространства. Сжимающие отражения и неподвижные точки. Основные операторы в функциональных пространствах. Общий вид линейного функционала. Умножение и дифференцирование обобщенных функций. Преобразование Фурье в пространстве.
- 5006. Функциональные уравнения
Определение понятия "функциональное уравнение". Методы решения функциональных уравнений и их систем. Роль и актуальность изучения функциональных уравнений в школьном курсе математики. Разработка сборника задач для использования математическими классами.
Неравенства Гельдера и Минковского. Декартово произведение метрических пространств. Пространства непрерывных и непрерывно дифференцируемых функций. Принцип сжимающих отображений. Линейные нормированные пространства. Полнота метрических пространств.
Решение квадратичных неравенств в школьном курсе. Функциональный метод решения линейных, квадратичных, логарифмических, иррациональных и показательных неравенств. Некоторые лжепреобразования. Применение в математике правила возведения в квадрат.
Ключевая роль неравенств в курсе математики средней школы. Решение неравенств с использованием свойств функции. Линейные, квадратичные, иррациональные, показательные и логарифмические неравенства. Некоторые лжепреобразования при решении неравенств.
- 5010. Функция бесконечности
Определение понятия предела функции для любой бесконечно большой последовательности. Характеристика ограниченности функций и арифметических операций, при условии наличия пределов. Изучение свойств бесконечно малых и больших математических функций.