Разработка и анализ методики исследования неподвижных точек автономной системы дифференциальных уравнений для подтверждения гипотезы о существовании решения этой системы с хаотическими колебаниями. Определение параметров, управляющих ее поведением.
- 2702. Нелинейная регрессия
Ознакомление с математической постановкой задачи регрессии. Исследование и характеристика одномерной полиномиальной регрессии с произвольной степенью полинома и с произвольными координатами отсчетов. Рассмотрение особенностей синусоидальной регрессии.
Выявление нелинейности преобразований Лоренца для времени, изучение следствий этого факта. Тензорное исчисление в теории относительности. Некорректность определения скаляра в тензорном исчислении. Четырехвектор пространства-времени физической реальности.
- 2704. Нелинейные модели
Понятие нелинейных моделей. Расчет систем управления по нелинейным моделям. Логические, оптимизирующие и параметрические нелинейные законы регулирования. Примеры динамических нелинейностей в законе регулирования. Системы с самонастройкой структуры.
Розв’язність задачі Діріхле для еліптичного рівняння в області з малим кутом, для квазілінійного еліптичного недівергентного рівняння в області з конічною точкою; нерівності гострого кута для пар лінійних еліптичних операторів в області з кутовою точкою.
Дослідження коливання літального апарату з абсорбером поблизу збуреної поверхні. Математичне моделювання динаміки балки на пружній основі з прикріпленим демпфером. Розв'язання системи нелінійних диференціальних рівнянь, що моделює коливання балки.
Два підходи організації ітераційних процесів для розв’язання нелінійних задач при формуванні дискретних образів статико-геометричним методом. Приклади, які демонструють використання цих принципів. Проведення аналізу залежності похибки від числа ітерацій.
Розробка узагальненої математичної моделі, що описує процес неперервного культивування змішаної культури при різних взаємодіях. Аналіз якісних змін у динаміці систем, обумовлених варіаціями декількох параметрів, за допомогою методів теорії біфуркацій.
Побудова конструктивних умов існування та алгоритмів знаходження розв’язків нетерових крайових задач для слабконелінійних систем звичайних диференціальних рівнянь. Побудова трьохкрокової ітераційної процедури та отримання умов збіжності цієї процедури.
- 2710. Нелокальна крайова задача для диференціального рівняння з частинними похідними у комплексній області
Дослідження нелокальної крайової задачі для рівняння з частинними похідними з оператором узагальненого диференціювання, який діє на функції скалярної комплексної змінної. Доведення теореми єдиності та теореми існування розв'язку задачі у просторі.
Критерии единственности решений задач для дифференциального уравнения в частных производных. Изучение краевых задач на сопряжения с нелокальным граничным условием, связывающим значения искомого решения на противоположных сторонах прямоугольной области.
Проблема нахождения необходимых и достаточных условий в свойствах геометрических фигур, которая является актуальной в работе учителя математики. Методические рекомендации для преподавания темы "Необходимые и достаточные условия" из курса "Геометрия".
Доказательство лемм, позволяющих получить оценки несобственных интегралов вдоль решений фазовой системы. Задача оптимального управления со свободными правыми концами траекторий и специфическими функционалами, связанными с особенностями краевых задач.
Определение понятия числового ряда. Нахождение предела его общего члена. Доказательство теоремы необходимого признака сходимости числового ряда. Достаточные признаки сходимости рядов с положительными членами. Исследование сходимости гармонического ряда.
Нахождение частных производных, градиента и эластичности функции, исследование ее на экстремум. Вычисление зависимости величины банковской ставки от срока вклада, интервала сходимости степенных рядов. Решение дифференциальных уравнений и задачи Коши.
Интегрирование иррациональных выражений и выражений, содержащих тригонометрические функции. Методы интегрирования простейших дробей. Первообразная, неопределенный интеграл и его свойства. Таблица основных формул интегрирования. Формула Ньютона–Лейбница.
- 2717. Неопределенный интеграл
Нахождение производной как основная задача дифференциального исчисления. Первообразная функция на интервале оси. Рассмотрение свойств неопределенного интеграла. Методы интегрирования в математическом анализе. Подведение функции под дифференциал.
- 2718. Неопределенный интеграл
Свойства неопределенного интеграла. Применение метода подстановки для различных типов функций. Разложение интегральной функции. Формула понижения степени для интеграла. Интегрирование иррациональных функций. Подстановки Эйлера. Дифференциальные биномы.
- 2719. Неопределённые интегралы
Основные аспекты вычисления объема тела, образованного вращением фигуры, ограниченной линиями. Особенности поиска неопределенных интегралов. Основы применения формулы Ньютона-Лейбница. Расчет площади криволинейной трапеции, ограниченной линиями.
- 2720. Неопределённый интеграл
Особенности нахождения неопределённых интегралов различных типов. Типовой расчёт по теме "Интегральное исчисление функции одной переменной" с применением методов интегрирования. Решение примерного варианта уравнения с краткими методическими указаниями.
Анализ состояния проблем синтеза моделей динамических объектов управления, параметры и структура которых неизвестны. Пример очень простой модели прогноза состояния динамического объекта в виде "черного ящика", параметры которого недоступны для измерения.
Исследование непараметрического оценивания минимальной длины периода и составляющей сигнала во временных рядах. Особенность вхождения периодической функции в параметрическое семейство. Характеристика определения естественных показателей размаха.
Формы проявления взаимосвязей. Методы оценки тесноты связи: корреляционные (параметрические) и непараметрические. Оценка линейного коэффициента корреляции. Доверительный интервал для теоретического коэффициента корреляции. Ранговый коэффициент Спирмена.
Математическое описание треугольника паскаля как бесконечной таблицы биноминальных коэффициентов, имеющей треугольную форму. Принцип соответствия треугольника Хуэя в китайском средневековом манускрипте. Блоки макроуровня и примеру треугольников Паскаля.
Вивчення змісту проблеми апроксимації неперервних відображень на банахових просторах та межах Фреше в класі аналітичних відображень. Доведення просторової теореми Вінера. Застосування поліномів для побудови і дослідження функцій на гільбертовому кубі.
Умови збіжності матриць Гріна лінійних крайових задач для систем диференціальних рівнянь першого порядку по нормі простору Лебега. Аналіз неперервності за параметром розв’язків лінійних крайових задач для систем диференціальних рівнянь першого порядку.
Аналіз використання теореми Геделя про неповноту в ідентифікації структури сталі. Застосування принципу зовнішнього доповнення Біра для часткового усунення обмеженості твердження про можливу самоорганізацію системи неживої природи та різновиду металів.
Выбор оптимальных параметров для касательного и двухчастотного разложений для модельной задачи. Исследование неполных блочных разложений высоких порядков на основе новых представлений для рациональных аппроксимантов, допускающих матричные обобщения.
Понятие непрерывной функции y=f(x) на промежутке Х. Доказательство непрерывности функции y=cos(x) на всей числовой оси с использованием формулы разности косинусов. Геометрический смысл теоремы о существовании нуля. Метод приближенного решения уравнения.
Комплексный анализ непрерывности функции. Возведение числа в степень. Экстремум функции независимых переменных. Статические оценки параметров распределения. Характеристики непрерывных случайных величин. Функция распределения вероятностей и ее свойства.