Ознакомление с сущностью прямых и обратных задач инженерной графики. Рассмотрение основных свойств ортогонального проецирования. Формулирование теоремы о проецировании прямого угла. Определение угла наклона прямой, общего положения к плоскостям проекций.
Понятие качества, методы его оценки на основе измерений свойств объекта и на основе коэффициентов "трудности". Операционные основы построения производственно-квалитативных функций. Основная формула теории управления с обратной связью и ее приложения.
Важнейшие классы и методы случайных процессов. Конечномерные распределения винеровского процесса. Дискретная цепь Маркова. Евклидово пространство случайных величин. Корреляционная теория. Теорема Фубини. Производная и интеграл. Канонические разложения.
Анализ случайных погрешностей, дающих возможность с определенной гарантией вычислить действительное значение измеренной величины и оценить ее ошибки. Интервальная оценка с помощью доверительной вероятности. Определение минимального количества измерений.
Интервальная оценка с помощью доверительной вероятности. Определение минимального количества измерений. Методика выявления грубых ошибок и опыты. Кривые распределения Стьюдента для различных значений. Генеральная и выборочная совокупность измерений.
- 2856. Основы теории статистики
Определение сущности статистического наблюдения. Разработка интервального вариационного ряда распределения. Ознакомление с абсолютными величинами. Рассмотрение степенных средних: средней арифметической, гармонической, квадратической и геометрической.
- 2857. Основы эконометрики
Характеристики вариационного ряда. Вычисление выборочной средней смещенной оценки дисперсии. Расчет точечной оценки параметра распределения методом моментов. Влияние новой технологии на среднюю производительность. Уравнение тренда для временного ряда.
Суть и особенности брэндинга. Основные характеристики бренда. Технология, этапы создания бренд-имиджа и методика управления ним. Концепция брендинга в международном маркетинге. Методики создания названий. Использование неологизмов, акронимов, гибридов.
Понятие и сущность рядов. Необходимость определения суммы числового ряда и естественность обычного определения с использованием софизма Бальцано. Составление последовательности частичных сумм ряда. Сходящаяся геометрическая прогрессия и бесконечность.
Сферы применения общего уравнения Риккати. Мультипликативный интеграл, вычисленный из матрицы коэффициентов как фундаментальное решение системы дифференциальных уравнений. Анализ условий, согласно которым матрица является функционально коммутативной.
Алгебра логики как математическая основа преобразования логических функций. Основные свойства конъюнкции, дизъюнкции и отрицания. Методы составления таблицы истинности для импликации и сложения по модулю 2 совершенной дизъюнктивной нормальной формы.
Анализ основных критериев, от которых зависит вывод формулы оптимального, объективного наукометрического показателя оценки научных достижений. Характеристика дробно-линейной математической функции, используемой для определения вклада ученого в науку.
Характеристика специфических особенностей при определении значений комплексных чисел, которые имеют натуральные целые значения. Анализ основных методик получения истинного результата при умножении чисел с положительными или отрицательными знаками.
Исследование кодирования и декодирования кодов Рида-Соломона, связанных с построением двоичных корректирующих кодов. Применение кода Рида-Соломона в системах передачи и хранения информации, в устройствах памяти и в телекоммуникационных системах.
Теоретические вопросы построения рядов распределения. Определение среднего значения признака и дисперсии по статистическому ряду распределения. Статистический ряд распределения групп семей по размерам площади на одного члена семьи с закрытыми интервалами.
- 2866. Особенности призмы
Понятие призмы, ее элементы (основания, боковые грани, высота, диагональ и др.) и виды. Понятие прямой, наклонной и правильной призмы. Свойства многогранника, вычисление площадей полной и боковой поверхностей. Теорема призмы и ее доказательство.
Применение метода математического моделирования для решения многих задач в разных областях человеческой деятельности. Основные этапы процесса моделирования. Классификация моделей по признакам поведения объекта. Физическое и математическое моделирование.
Исследование базиса и составление таблицы умножения для заданных векторов. Особенности и условия применения векторов в процессе доказательства алгебраических неравенств. Вычисление скалярного произведения заданных векторов, условия перпендикулярности.
Применение математических моделей в практике стандартизации. Модель для оценки степени сближения позиций сторон при проведении переговоров. Теория регулярных марковских цепей в зависимости времени достижения консенсуса от авторитарности экспертов.
Рассмотрение задач векторной оптимизации при векторном критерии и при обобщенном функционале, соответствующем векторному критерию. Решение задач векторной оптимизации статики нелинейных объектов. Применение типовых методов синтеза оптимальных управлений.
Перекрестный и сравнительный анализ влияния технологий и факторов роста в образовании на развитие математического анализа. Характеристика дифференциальных уравнений и приложений уравнения Пенлеве. Исследование жордановых алгебр и метрической геометрии.
Изучение тригонометрических функций именно как функций числового аргумента уделяется большое внимание в школьном курсе алгебры и начал анализа. Методические рекомендации по подготовке и проведению практических и лабораторных работ на уроках математики.
Рассмотрение алгоритма решения задачи с дифференцируемой целевой функцией методом замены переменных и методом множителей Лагранжа. Определение особенностей постановки задачи условной минимизации с ограничениями-равенствами ограничениями-неравенствами.
Особенности системного подхода к решению задач управления. Основные понятия математической статистики. Этапы системного анализа. Изучение методов анализа больших систем, планирование экспериментов. Экспертные оценки, ранговая корреляция и конкордация.
Логика как самостоятельная наука. История становления классической математической логики. Виды и направления в развитии неклассической логики. Учение о силлогизме. Становление неформальной логики. Основные разделы современной математической логики.
Сущность стиля математического мышления, его характерные черты: доведенное до предела доминирование логической схемы рассуждения, лаконизм, четкая расчлененность хода и скрупулезная точность формул. Сущность экономико-математического моделирования.
Определение и условия существования определенного интеграла. Проведение исследования основных понятий и предложений теории пределов. Характеристика формулы Ньютона-Лейбница. Выражение остаточного члена теоремы Тейлора с помощью определенной величины.
Анализ геометрических образов. Основные свойства ортогональных проекций. Система взаимно перпендикулярных плоскостей. Образование комплексного чертежа. Способ прямоугольного треугольника. Определение натуральной величины отрезка прямой общего положения.
Знаходження основного способу, за допомогою якого здійснюється заміна віднімання додаванням. Сумування числа до зменшуваного, що протилежне від'ємнику. Особливість розгляду змісту перетворень. Проведення розв’язку рівняння і виконання його перевірки.
Специфіка практичного використання електронних курсів для забезпечення мобільності майбутніх фахівців під час їхньої професійної підготовки. Сутність процесу організації математичної підготовки майбутніх фахівців із застосуванням електронних курсів.