Перевірка гіпотези Р.С. Ісмагілова, яка стосується незвідності регулярних представлень різних нескінченновимірних груп та мір. Вивчення алгебр фон Неймана, породжених регулярним представленнями нескінченновимірних груп. Поширення гіпотези Р.С. Ісмагілова.
Образующие элементы колец и полей инвариантов коприсоединенных представлений борелевских и максимальных унипотентных подгрупп в простых группах Ли. Особенности и условия применения метода редукции сферических функций, анализ полученных результатов.
Встановлення умов глобальної розв’язності та нерозв’язності задачі Коші для виродного параболічного рівняння з нелокальним джерелом. Аналіз визначення початкових функцій, що повільно спадають до нуля та містять нелокальний множник у від’ємному степені.
Умови існування та неіснування глобальних за часом розв’язків задачі Коші для виродних параболічних рівнянь з подвійною нелінійністю в головній частині та з джерелом в необмежених областях. Результати типу Фуджити для задачі Коші з параболічним рівнянням.
Задача о вариационном неравенстве. Необходимость разработки теории краевых задач с разрывными по фазовой переменной нелинейностями. Некоэрцитивные вариационные неравенства с непрерывными и многозначными нелинейностями. Условие Ландесмана-Лазера.
Разработка, программная реализация численного метода решения систем дифференциальных уравнений с произвольными, в том числе нелинейными, граничными условиями на основе методов Бубнова-Галеркина. Исследование устойчивости решений на основе метода Ляпунова.
Анализ парирования отказов комбинационных схем, реализующих конфигурируемые логические блоки программируемых логических интегральных схем типа FPGA в функционально-полном толерантном базисе. Реконфигурация логики системы с целью ее восстановления.
Разработка рекуррентного алгоритма, позволяющего получать сильно состоятельные оценки параметров многомерных по входу линейных динамических систем при наличии помех наблюдения во входных и выходных сигналах. Оценка эффективности предложенного метода.
Дослідження проблеми скінченностанової спряженості для автоморфізмі бінарного кореневого дерева. Запропонований рекурсивний критерій надає можливість ефективного розв’язання проблеми скiнченностанової спряженостi для певного класу автоморфiзмiв.
- 3520. Реляционная алгебра
Основы реляционной алгебры, её операции и замкнутость. Реляционные операторы и специальные реляционные операции. Выражение реляционного исчисления кортежей и реляционные исчисления с переменными на доменах. Элементы синтаксиса QUEL и языка предикатов.
- 3521. Рене Декарт
Короткі біографічні дані про життя Рене Декарта та навчання в єзуїтському коледжі. Процес доведення придатності математичних принципів для пізнання природи та їхню велику користь. Сутність теорії пізнання та її складові, різниця інтуїції та дедукції.
Анализ правовой документации, регламентирующей развитие математического образования и подготовку специалистов для сферы образования в России. Описание системы рефлексивных заданий для контактной и внеконтактной самостоятельной работы по математике.
Использование команды plot и fplot при построении графиков. Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта четвертого порядка. Построение графика значений по методам дифференцирования.
Решение системы алгебраических уравнений матричным способом и методом Гаусса. Определение собственных чисел и собственных векторов матрицы. Возведение комплексного числа в степень. Определение наибольшего и наименьшего значений функции на отрезке.
Место, теоретическая основа, связи линейных, квадратных, кубических, логарифмических, показательных, тригонометрических уравнений в курсе математики средней школы. Практическое выявление самых распространенных в математике уравнений и способов их решения.
Понятие алгебраического уравнения четвертой степени, история его решения. Пример решения биквадратного и возвратного уравнений четвертой степени. Решение Декарта—Эйлера. Анализ схемы метода Феррари, разложения на множители и кубическая резольвента.
Особенности отображения и разделения заданного уравнения на элементарные подуравнения. Анализ построения асимптот. Основные аспекты решения уравнений третьей степени. Формула вычисления комплексных корней. Основы проверки правильности записи момента.
Некооперативная игра, в которой участвуют два игрока, выигрыши которых противоположны. Реализация решения антагонистической игры методом обратной матрицы в программной среде MATLAB. Оптимальная стратегия A и B и значение цены игры в решении программы.
Формулы комбинаторики. Расчет количества перестановок и сочетаний объектов. Факториал - произведение всех натуральных чисел. Значение расположения элементов. Способы размещения, перестановки предметов и распределения между ними уникальных атрибутов.
Способы определения абсолютного и относительного прироста урожайности в отчетном периоде по сравнению с базисным. Основные этапы расчета среднегодового абсолютного прироста и индивидуальных индексов. Характеристика свойств индексов Ласпейреса и Пааше.
Общая характеристика линейной одномерной модели нестационарного процесса теплопроводности. Знакомство с основными особенностями решения граничных обратных задач теплопроводности на основе параметрической оптимизации. Рассмотрение уравнения Фурье.
Нахождение члена последовательности рекуррентного соотношения. Вычисление корней уравнения. Определение данных выборки. Построение полного потока в транспортной сети. Создание таблицы истинности логического выражения. Упрощение с помощью карты Карно.
Определение третьего порядка по правилу разложения по элементам первой строки. Использование формулы сокращенного умножения для знаменателя. Исследование функций методом дифференцированного исчисления. Решение дифференциального уравнения первого порядка.
Дифференциальные уравнения первого порядка: уравнения в частных производный и обыкновенные дифференциальные уравнения. Понятие интегральной кривой. Связь между геометрическая интерпретация уравнения и его решения. Теорема существования и единственности.
Нахождение (вычисление) интегралов. Вычисление площади фигуры, ограниченной графиками функций, с использованием свойств определенного интеграла. Использование признаков сходимости рядов. Решение дифференциального уравнения при заданных начальных условиях.
Необходимость изменения геометрического образования учащихся. Применения метода преобразования, его преимущества над остальными. Характеристика задач решаемых данным способом, образование новых умений. Использование метода параллельного переноса.
Решение прямой задачи линейного программирования симплексным методом с использованием симплексной таблицы. Определение максимального значения целевой функции. Расширенная матрица системы ограничений и равенств задачи. Проверка критерия оптимальности.
Понятие линейного программирование и его основные задачи. Сущность симплекс-метода и его применение для решения систем линейных уравнений. Примеры составления симплекс-таблицы, основные шаги алгоритма. Дополнительные и вспомогательные переменные.
Опорный план и ограничения транспортной задачи. Математическая модель задачи планирования производства. Алгоритм симплекс-метода и матрица коэффициентов прямых затрат трехотраслевой экономической системы. Принятие решения в условиях неопределенности.
Разработка обучающего модуля по решению геометрических задач на построение. Примеры построения задач с помощью циркуля и линейки, схемы их решения. Определение свойства осевой симметрии плоскости. Метод осевой симметрии в решении задач на построение.