Анализ работ А.Н. Колмогорова по аксиоматическому подходу к теории вероятностей и средних величин. Исследование свойств медианы как оценки центра распределения. Характеристика эффекты "вздувания" коэффициента корреляции и метода наименьших квадратов.
Теория вероятностей и математическая статистика. Реализация основных процедур математико-статического анализа данных. Статическая проверка гипотез с применением модели "хи-квадрат". Умение специалистами использовать ее таблицу в прикладной статистике.
Проверка гипотезы о согласии эмпирического распределения вероятностей случайной величины напряжения и коэффициента мощности с нормальным законом распределения. Определение математического ожидания, дисперсии и среднеквадратического отклонения замеров.
Методика определения шага интервального ряда по формуле Стерджесса. Аналитические зависимости, которые применяются для расчета показателей безотказности, при использовании экспоненциального распределения. Порядок статистической оценки данных выборок.
Вероятностно-статистические модели реальных явлений и процессов. Рассмотрение различных вариантов вероятностных моделей и способов их использования. Изучение моделей дихотомических данных, результатов парных сравнений, бинарных отношений и рангов.
Коррозионное разрушение металлов под действием агрессивных сред - одна из важнейших проблем нефтегазовой и химической промышленности. Анализ атомно-молекулярных структур коррозирующего объекта, полученных в результате математического моделирования.
Анализ классического определения вероятности. Описание теорем сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Изучение дискретных случайных величин. Нормальный закон распределения. Варианты задач по теории вероятности.
Логическая сумма несовместных событий. Произведение вероятностей для независимых событий. Вероятность появления бездефектной детали. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины.
Теорема сложения вероятностей совместных событий, формула полной вероятности. Вероятность появления хотя бы одного события. Локальная и интегральная теоремы Лапласа, формула Бернулли. Условные вероятности, аксиомы теории вероятностей и формула Бейеса.
Определение необходимости вероятностного (стохастического) прогнозирования. Исследование графического представления о статистическом ряде. Рассмотрение и характеристика группового прогнозирования куба информации, который заменяется квадратом информации.
Критерії взаємної простоти двох цілих чисел. Найменше спільне кратне та методи їх знаходження. Найбільший спільний дільник і методи його знаходження. Ознаки подільності. Основна властивість дробу. Зведення дробів до найменшого спільного знаменника.
Нахождение выражения, используемого для определения взаимной информации двух однородных гауссовских полей. Анализ множества, описываемого корреляционными матрицами, и решаемого задачи измерения полей при обработке. Обзор взаимной корреляции векторов.
Построение линии пересечения двух поверхностей в частном и в общем случаях. Характеристика особого случая построения линии пересечения двух поверхностей. Особенности процесса построения линии пересечения поверхностей способом секущих плоскостей.
Порядок и принципы построения алгоритма, основанного на взаимодействиях параллельно работающих компонентов. Представление параллельных алгоритмов, реализованное в виде дуальных графов или матрично-предикатном виде. Преимущества подобного представления.
Понятие и особенности групповых систем, моделирующих биосистему. Модель, инвариантная к выбору переменных состояния, характеризующая взаимодействие популяций как объектов группового моделирования. Примеры алгебраических преобразований L-системы.
Определение связи между вектором входа и векторами состояния и выхода. Примеры получения и преобразования моделей. Определение характеристического уравнения объекта. Расчет эквивалентной матрицы передаточных функций, которая связывает векторы состояния.
Особенность использования математики в экономических процессах. Изучение специфических математических методов, которые основываются на основных постулатах теории вероятностей. Характеристика разложения функции в бесконечную сумму степенных функций.
Разработка методов анализа данных, предназначенных для решения конкретных прикладных задач. Изучение влияния на свойства статистических процедур анализа данных тех или иных отклонений от исходных предположений. Примеры применения метода Монте-Карло.
Феномен золотого сечения как свойства нелинейных объектов. Анализ структур квазикристаллов для выявления пятиугольников и плиток Пенроуза. Возникновение математических абстракций, построенных на базе золотой пропорции, из обобщения природных явлений.
Новый взгляд на историю возникновения математики как науки. Развития греческой арифметики. Дедуктивное построение предмета. Внутренние математические проблемы. Порядок систематических теорий. Аксиомы как натуральные числа. Доклады Гильберта и Пуанкаре.
Биография Пифагора, история открытия и различные формулировки его теоремы. Характеристика способов доказательства, особенности геометрических и алгебраических методов. Значение теоремы Пифагора и ее применение. Практикум по решению задач школьного курса.
Проведение анамнеза больного с вибрационной болезнью, обусловленной воздействием общей вибрации. Клиническое описание периферического ангиодистонического синдрома пациента и проявлений вегетативно-сенсорной полиневропатии верхних и нижних конечностей.
Характеристика методу функції Гріна для розв’язування диференціального рівняння. Ознайомлення з процесом реалізації програми для методу функції Гріна середовищі СКМ "Mathematica". Аналіз особливостей побудови функції при постійному значенні потенціалу.
Методичні основи вивчення додавання і віднімання чисел. Теоретико-множинний підхід до дій додавання та віднімання. Аксіоматичний підхід до транзитивних дій. Підхід "Натуральне число як міра величини". Вивчення арифметичних дій в початковій школі.
Характеристика процесу побудови інтерполяційного полінома Ньютона. Аналіз розв’язання системи алгебричних рівнянь. Поняття лінійної та алгебричної інтерполяції. Поняття, побудова та реалізація алгоритму при розрахунку наближеного значення функції.
Дослідження біографії видатного математика Глушкова Віктора Михайловича. Нагороди та отримані звання Глушкова. Науково-дослідницька діяльність математика в галузях алгебраїчних структур, теорії програмування, систем алгоритмічних алгебр та кібернетики.
Вивчення методів розв’язку нестандартних задач. Особливості складання і розв’язування алгебраїчних текстових задач. Характеристика основ використання креслень для їх схематичного запису. Розгляд основних етапів проведення аналізу задачі для її рішення.
Вещественная функция, гармоническая в круге. Первоначальное изучение граничного поведения. Формула Коши-Грина, обобщение в случае единичного круга. Интегральное представление гармонических функций. Бесконечные числовые произведения чисел, их сходимость.
Определение степени уравнения в зависимости от вида 3-ткани. Описание некоторых видов определителей плоской прямолинейной 3-ткани. Построение трехдиагональной гиперболической гиперболы канонического уравнения. Образование плоской прямолинейной 3-ткани.
Понятия случайной величины и события. Основные законы распределения, используемые в теории надежности. Математическое ожидание и среднеквадратическое отклонение числа событий. Определение интенсивности отказов и вероятности безотказной работы устройства.