Анализ предмета и модели механики. Объект классической механики. Момент силы относительно точки. Теорема о зависимости момента от центра. Теорема о проекциях моментов. Момент силы относительно оси. Главный момент системы сил. Вращательная система сил.
Построение векторных четырёхмерных моделей теоретических количественных рисков, имеющих стоимость. Математическое моделирование параллельных проектов, уязвимых каждый своим локальным риском. Использование портфеля ценных бумаг в качестве конструкции.
Встановлення необхідних і достатніх умов існування розв'язків різних класів векторних задач дискретної оптимізації. Побудова математичних моделей та методів дослідження дискретних задач оптимізації в умовах невизначеності та оцінка їх ефективності.
Понятие линейного пространства, поиск конечной максимально-независимой системы векторов. Связь между базисами n-мерного пространства. Матрица перехода от одного базиса к другому. Преобразование координат вектора. Невырожденная квадратная матрица порядка.
Способы задания плоскостей в пространстве. Основные аксиомы стереометрии. Изучение возможных вариантов взаимного расположения плоскостей в пространстве, их основные признаки и свойства. Скалярное произведение двух векторов, зная координаты этих векторов.
Исследование достижений Рене Декарта - французского математика и философа. Определение и анализ сущности вектора – направленного отрезка прямой и геометрической абстракции векторной величины. Ознакомление с особенностями декартовой системы координат.
Описание метода векторного преобразования Фурье с разрывными коэффициентами. Подробная иллюстрация на примере динамической задачи теории упругости, техники применения указанного метода к решению задач математической физики в случае неоднородных сред.
Построение вектора, перпендикулярного двум имеющимся. Обзор правых и левых троек векторов в трёхмерном пространстве. Отличие векторного произведения от скалярного. Изучение его геометрических и алгебраических свойств. Выражения для декартовых координат.
Свойства линейных операций над векторами. Векторное пространство как действительное множество направлений с действительными компонентами, в котором определены операции сложения векторов и умножения его на число, удовлетворяющие приведенным свойствам.
- 460. Векторный анализ
Теория поля. Элементы дифференциальной геометрии. Направление касательной в каждой точке кривой. Площадь гладкой поверхности. Предел интегральной суммы, полученной путем разбиения поверхности на малые участки и проектирования их на касательные плоскости.
Анализ аксиом о взаимном расположении точек, прямых и плоскостей в пространстве. Характеристика прямоугольной системы координат в промежутке. Свойства аффинных и метрических преобразований в стереометрии. Суть векторного решения стереометрических задач.
Изучение основных понятий и операций над векторами, анализ координат вектора. Векторный метод решения геометрических задач. Суть векторного метода решения геометрических задач. Характеристика примеров решения геометрических задач векторным методом.
Исследование методов вычисления индекса нулевой изолированной особой точки плоского векторного поля. Описание подхода, помогающего свести полиномиальные векторные поля к векторным полям с известным индексом нуля через гомотопические преобразования.
Вектор как одно из фундаментальных понятий современной математики, тензор - его обобщение. Векторы и их применение в жизни человека. Использование скалярного произведения в элементарных и абстрактных областях математики, физики и прикладных наук.
Вектор - элемент векторного пространства (некоторого множества с двумя операциями на нем, которые подчиняются восьми аксиомам). Свободный и связанный векторы. Евклидовая норма и правило параллелограмма. Скалярное произведение и умножение вектора на число.
Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.
Отрезок, для которого указано, какая его граничная точка является началом, а какая – концом, называется направленным отрезком или вектором. Осуществление эволюции понятия вектора и его широкое использование в различных областях математики и механики.
Характеристика векторных величин. Понятие единичного вектора. Линейные операции с векторами и действия над векторами в координатной форме. Деление отрезка в заданном отношении. Координаты вектора в прямоугольной системе. Условие коллинеарности векторов.
- 469. Велика теорема Ферма
Особливості еволюції задачі: від теореми Піфагора до Великої теореми Ферма. Значення для науки великого об’єднання в математиці. Творець великої проблеми П. де Ферма: його діяльність, книга "Арифметика", способи доведення теореми про прості числа.
- 470. Велика теорема Ферма
Вклад робіт Ферма на розвитку нових галузей в математиці: математичного аналізу, аналітичної геометрії, теорії вірогідності. Поява теорії з'єднань - комбінаторики. Велика теорема Ферма, історія її доведення. Спроби вирішення цієї математичної проблеми.
Доказательство Великой теоремы Ферма на основе соответствия эллиптических кривых и модулярных форм. Применение формулы бинома И. Ньютона. Преобразование уравнения в эквивалентное кубическое, где кривая, соответствующая уравнению, является эллиптической.
- 472. Великие математики
Теорема Пифагора. Основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объёмов в главном труде Евклида "Начала". Постулаты Евклида, теорема Виета. Арифмометр Лейбница, формула Эйлера.
Вклад Софьи Ковалевской в развитие математического анализа, механики и астрономии. Создание Лузиным дескриптивной теории функций. Роль Колмогорова в создании системы аксиом современной теории вероятностей. Создание аналитической геометрии П. Ферма.
М.Ф. Атьи и А. Зингер, их теорема Атьи-Зингера и ее характеристика. Л. Фадеев и уравнения "Янга-Миллса". Г. Перельман и одна из "семи математических задач тысячелетия" - гипотеза Пуанкаре. Основные открытия в математике XX века и их особенности.
Биография и научная деятельность Л. Лагранжа. Разработка учёным метрической системы мер, весов и нового календаря. Опубликование в Париже "Теории аналитических функций". Решение дифференциальных уравнений. Награждение графа орденом Почётного легиона.
Исследование сходимости рядов на высшем уровне норвежским математиком Н. Абелем. Основы механики и гидростатики, открытые Архимедом. Методы интегрирования рациональных дробей, правило раскрытия неопределенности И. Бернулли. Символическая алгебра Ф. Виета.
- 477. Верификация спецификаций в языке L относительно темпоральных свойств, не выразимых в этом языке
Обеспечение правильности требований к функционированию исходной спецификации как одна из важнейших задач, решаемых в процессе проектирования реактивных алгоритмов. Характеристика специфических особенностей осуществления верификации открытых систем.
Понятие теории вероятности, её формулы и правила. Применение теории вероятности в различных сферах жизнедеятельности человека. Определение вероятности получения положительной оценки при сдаче экзамена по математике путем угадывания правильного ответа.
Нормальный закон на плоскости. Вероятность попадания в прямоугольник со сторонами, параллельными главным осям рассеивания. Эллипсы рассеивания, приведение нормального закона к каноническому виду. Вероятность попадания в область произвольной формы.
Описание нового подхода к формированию геометрических моделей объектов сложной формы и формализации исходных данных, обеспечивающих наперед заданную точность моделирования и гладкость обводов поверхностей. Оценка погрешностей моделирования формы.