Для различных приложений функций нескольких переменных построен алгебраический подход к построению многочленов, формулы которых содержат символьные переменные. Примеры демонстрируют эффективность и широкий охват решаемых научно-технических задач.
Алгоритм построения системы ортогональных финитных функций для начальной задачи нелинейного пространственного уравнения вязких трансзвуковых течений. Система обыкновенных дифференциальных уравнений с диагональной матрицей как результат проектирования.
Характеристика дополнительных геометрических свойств треугольника. Исследование понятия и сущности ортотреугольника, изучение его основных свойств. Анализ особенностей применения геометрических свойств ортотреугольника к решению практических задач.
Аналіз вимог до розробки контенту сайту навчального призначення, аналіз впливу застосування сайтів на формування інформатичних компетентностей студентів закладів вищої технічної освіти. Аналіз застосування авторського сайту "Диференціальні рівняння".
- 3125. Осевая симметрия
Изучение свойств преобразований плоскости. Примеры решения задач с использованием преобразований плоскости. Анализ содержания школьных учебников геометрии по данной тематике. Возможности применения преобразований плоскости к решению задач планиметрии.
Построение двойственного образа SH–распределения. Формула оснащения Э. Бортолотти в математики. Изучение основных индексов SH-распределений. Двойственные связности на гиперполосах специальных классов. Геометрия регулярного гиперполосного распределения.
Ознакомление с графическими методами представления данных и методами биостатистики. Изучение законов распределения дискретных случайных величин: биномиального распределения (Бернулли) и распределения Пуассона. Анализ эмпирических законов распределения.
- 3128. Основания геометрии
Развитие дедукционного метода в геометрии от "Начал" Эвклида до аксиоматики Гильберта. Основные понятия геометрии - аксиомы и постулаты, соотношения между ними; определения фигур и доказательства геометрических предложений; модели Лобачевского и Клейна.
- 3129. Основи векторів
Розгляд поняття вектора. Основні лінійні операції над векторами. Проекція вектора на вісь. Основні властивості проекцій. Декартова прямокутна система координат. Характеристика напрямних косинусів. Лінійні операції над векторами, заданими проекціями.
- 3130. Основи вищої математики
Поняття комплексного числа. Тригонометрична форма комплексного числа. Основні дії над матрицями. Теорема про базовий мінор. Декартова система координат. Обмежені й необмежені послідовності. Елементи математичної логіки. Скінченні графи й сітки.
- 3131. Основи вищої математики
Визначення поняття варіаційного числення — розділу функціонального аналізу, який займається диференціюванням функціоналів. Дослідження сутності екстремуму функціоналу. Ознайомлення з рівнянням Ейлера. Розгляд математичної моделі закону керування.
- 3132. Основи вищої математики
Ознайомлення з основними методами визначення математичних моделей об’єктів та процесів в системах із самоналаштуванням. Долідження особливостей безінерційної стабілізації. Характеристика методу пошуку екстремуму в системах екстремального керування.
Основні поняття планіметрії. Трикутники та їхні властивості. Характеристика аксіоми паралельності прямих. Прямокутник як паралелограм, усі кути якого прямі. Дотична перпендикулярна до радіуса, проведеного в точку дотику. Кут між прямою і площиною.
Історія виникнення теорії графів, їх зображення на площині. Побудова матриці інцидентності; графу, ізоморфного заданому. Ейлерів цикл та шлях у графа. Гамільтонів цикл. Алгоритм Дейкстри. Визначення рівня кожної вершини, ексцентриситет та висоту дерева.
Огляд квантових аналогів алгебр функцій у незвідних обмежених симетричних областях. Викладення явного вигляду інваріантного інтегралу; побудова коваріантного диференціального числення. Некомутативні аналоги інтегральних представлень Бергмана і Коші-Сеге.
Основні методи відображення формоутворюючих елементів простору – точок, прямих, площин, методи геометричного моделювання, а також складних фігур – багатогранників, кривих поверхонь. Методи розв’язання на графічних моделях метричних та позиційних задач.
- 3137. Основи перспективи
Поняття та види перспективи. Основні елементи апарата проецювання. Поділ прямих у перспективі в заданому відношенні. Побудова одного та кількох кіл із спільним центром. Перспективи площини та точки. Вибір положення картини, точки зору та лінії горизонту.
- 3138. Основи планіметрії
Основні поняття та уявлення про твердження в геометрії. Математичні властивості та ознаки рівності довільних трикутників. Характеристики паралелограмів та трапецій. Різновид прямокутників та шляхи обчислення радіусу кола. Сутність теореми Піфагора.
Особливість доведення подібності трикутників. Характеристика знаходження периметру трапеції. Перевірка рівня засвоєння учнями змісту основних понять теми "Прямокутний трикутник". Знаходження довжини другої похилої та гіпотенузи другого трикутника.
Дослідження використання узагальнених тригонометричних функцій для визначення площини за допомогою кутової та радіальної параметризації. Формулювання і доведення основної теореми узагальнених тригонометричних функцій. Наслідки запропонованої теореми.
Получение оптимального плана-решения в задачах с линейной структурой. Классификация методов линейного программирования. Модель основной задачи линейного программирования в разных формах записи. Графический метод решения задачи линейного программирования.
- 3142. Основная статистика
Анализ статистических законов распределения случайных чисел. Функция распределения и плотности равномерного закона. Основные статистические характеристики распределений случайных величин. Проверка нормальности распределения по асимметрии и медиане.
- 3143. Основная теорема алгебры
Доказательство теоремы о выявлении алгебраической замкнутости поля С (то есть существования корня у любого отличного от константы полинома с комплексными коэффициентами) согласно с принципами лемм Даламбера и о достижении точной нижней грани значений.
Доведення нерівностей за допомогою означення, сутність синтетичного та аналітичного методу. Структура класичних нерівностей між середніми та їх доведення. Наслідки з нерівності Коші. Застосування властивостей функцій та методів математичного аналізу.
Вирішення двох основних метричних задач на точки, прямі та площини, не володіючи методикою застосування і алгоритмами розв’язання яких практично неможливо дійти до результату, працюючи конструктивними методами із площиною загального розташування.
Геометричне зображення суми і різниці комплексних чисел. Математичний алгоритм переходу із тригонометричної форми в алгебраїчну і навпаки. Методика побудови таблиці Келі для операції множення. Доведення формули Муавра методом математичної індукції.
Особливість приписування чисел об’єктом відповідно певних правил. Вимірювання рівня навченості студентів, пізнавальних інтересів та сформованості якихось якостей за допомогою рангової шкали. Аналіз застосування формули коефіцієнта кореляції Пірсона.
Лінійне тригонометричне рівняння. Зведення тригонометричного рівняння до алгебраїчного. Розклад рівняння на множники. Рівність однойменних функцій. Перетворення добутків на суми, сум на добутки. Системи тригонометричних рівнянь. Вправи для розв’язування.
Выделение простых чисел как важная задача математики, основные алгоритмы проверки чисел на простоту. Понятие делимости целых чисел, свойства делимости, алгоритм Евклида. Основные критерии простоты целых чисел, свойства и теоремы из теории сравнений.
В статье освещены основные проблемы создания классификации математических понятий с целью дальнейшего формирования семантических сетей и способов представления классификации для осуществления концептуализации математических знаний среди обучающихся.