Роль Софуса Ли в создании фонда по присуждению премий математикам. Исторический анализ процесса становления Премии Абеля, лауреаты главной математической премии и их главные достижения. Использование Фюрстенбергом и Маргулисом вероятностных методов.
Теоретические основы преобразование выражений с помощью дифференциалов. Понятие производной, понятие частной производной. Связь между производной и дифференциалом. Таблица производных основных элементарных функций. Правила дифференцирования функций.
Рассмотрение параллельного сдвига графика функции вдоль оси. Изучение этапов построения синусоида. Математическое преобразование графика функции y = sinx. Области определения и значений положительного и отрицательного переноса параметров вдоль абсциссы.
Изучение порядка построения графиков функций. Вычленение базовой функции и определение порядка линейных преобразований, содержащих модуль аргумента. Отображение графика симметрично относительно оси координат. Главные правила преобразования аргумента.
- 3185. Преобразование Лапласа
Переменная преобразования Лапласа. Оригиналы и изображения непрерывных сигналов по Лапласу. Реакция системы после почленного перехода от оригиналов к изображениям при нулевых начальных условиях. Определение передаточной функции инерционного звена.
Определение координат точки при переходе от одной системы координат к другой. Связь между старыми и новыми координатами при повороте координатных осей на некоторый угол. Кривые второго порядка. Уравнения окружности, эллипса, гиперболы и прямой общих точек
Формулы преобразований при повороте координатных осей. Простейшие уравнения точки, окружности и эллипса. Понятие эксцентриситета эллипса. Формулы фокальных радиусов. Мнимый эллипс, пара мнимых пересекающихся прямых. Каноническое уравнение гиперболы.
- 3188. Преобразование функций
Множество значений, принимаемых функцией в результате ее применения. Виды преобразований графиков функций. Предел монотонной и ограниченной последовательности. Интегрирование рациональных функций. Интегрирование по частям в определенном интеграле.
- 3189. Преобразование функций
Обзор прямого преобразования Фурье. Типичное изображение спектра непериодического сигнала. Изучение примеров определения спектра временных функций. Исследование особенностей прямого преобразования Лапласа. Получение изображения для импульсных функций.
Написание координат концов новых полученных ломанных и сравнение их с исходными. Применение свойства периодичности любой тригонометрической функции, определение наименьшего положительного периода. Построение графика функции. Абсциссы и ординаты его точек.
Рассмотрение компьютерной революции как характерного примера глобальной инструментальной научной революции. Условия дл распознавание материально-технических революций в истории математики. Характеристика и специфика революции в математике par excellence.
Рассмотрение задачи приближения периодических функций составными двухточечными многочленами Эрмита, представление этих многочленов, использующих значения функции и ее производных в точке. Связь двухточечных многочленов Эрмита и многочлена Тейлора.
Систематическое изучение семейств линейных полиномиальных операторов в шкале пространств. Использование методов теории функций одной и многих действительных переменных, теории вероятности, функционального анализа в банаховых пространствах, анализа Фурье.
Основные свойства операции дифференцирования. Производные и дифференциалы высших порядков. Понятия интерполяции и аппроксимации. Интерполяционные формулы Ньютона при равноотстоящих узлах. Использование квадратурных формул для численного интегрирования.
Получение двусторонних поточечных оценок функции Лебега сумм Фурье по рассматриваемой системе. Доказательство точности данного неравенства в случае приближения функций. Построение примера функции заданного класса в случае обобщенного веса Якоби.
Нахождение точного решения задачи о минимуме заданного функционала. Решение уравнения Эйлера. Нахождение приближенных решений (итераций) задачи о минимуме по методу Ритца при определенном выборе системы координатных функций. Построение графиков функций.
Трудности решения задачи проникания недеформируемого тела при ударе по нормали в грунт. Сравнение расчетных данных, полученных по приближенной методике, с результатами численного моделирования на основе явной лагранжевой конечно-разностной схемы.
Приближенное решение определенного интеграла от непрерывной функции, расчет погрешностей. Способы решения дифференциальных уравнений. Абсолютная и условная сходимость числовых и степенных рядов. Интервал, свойства и радиус сходимости степенного ряда.
Квадратурная формула Ньютона-Котеса, ее характеристика и частные случаи. Анализ квадратурной формулы Гаусса. Приближенное вычисление несобственных интегралов. Кубатурные формулы типа Симпсона как метод приближенного вычисления двойного интеграла.
Определение возможности применения метода осциллирующих функций к нахождению приближенного решения задачи Коши для дифференциального уравнения с отражением аргумента. Оценка полученной погрешности построенного решения, график построенного решения.
Определение корней уравнения, уточнение их с применением графических методов хорд и касательных Ньютона и простых итераций. Составление таблиц приближенных значений интеграла дифференциального уравнения с использованием методов Эйлера-Коши и Рунге-Кутта.
Рассмотрение методов вычисления определенных интегралов, подынтегральных функций которых не являются элементарными. Характеристика метода прямоугольников. Исследование метода трапеций и парабол. Оценка точности вычисления "неберущихся" интегралов.
Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.
Определение двустороннего усилия и обширной области теории упругости и механики разрушения. Решение краевой задачи для плоского упругого тела с внешними и внутренними концентраторами напряжений посредством применения сингулярного интегрального уравнения.
Особенности состава и содержания приводимых и неприводимых многочленов. Признаки неприводимости многочленов по Эйзенштейну, Дюма и Ньютону. Использование полиномов третьей и четвёртой степени при моделировании временных рядов экономических показателей.
Рассмотрение современных основ формирования элементарных математических представлений. Общая характеристика методов обучения дошкольников. Использование разнообразных методов и приемов развивающего обучения на занятиях по математике в детском саду.
- 3207. Призма
Свойства и виды призм. Основания, боковые грани и ребра. О развитии геометрии в Древней Греции до Евклида. Элементы призмы. Свойства правильной четырехугольной призмы. Формулы для правильной четырехугольной призмы. Призма в оптике. Измерение объемов.
- 3208. Призма
Изучение призмы – многогранника, составленного из двух равных многоугольников, расположенных в параллельных плоскостях, и параллелограммов. Элементы и виды призм, теорема о площади боковой поверхности прямой призмы. Главная формула объема призмы.
Представление членов степенного ряда в виде комбинации линейных функций. Построение трапеций для подтверждения присутствия закономерности. Возможные варианты представления членов степенного ряда. Рассмотрение роли единицы в членах степенных рядов.
- 3210. Признаки делимости
Анализ различных теорем и свойств признаков делимости. Изложение основных фактов, относящихся к признакам делимости. Общие признаки равноостаточности и делимости. Классификация признаков делимости. Примеры школьных задач на изучение данной темы.