Рассмотрение предела числовой последовательности. Изучение основных правил дифференцирования производных. Важные теоремы о последовательностях и функциях. Производная алгебраической суммы уравнения. Определение скорости при произвольном законе движения.
- 3092. Последовательность чисел
Обзор видов множества. Характеристика геометрического содержания предела числовой последовательности. Арифметические действия над основными свойствами сходящихся математических постоянств имеющих предел. Обоснование условий сходимости числового ряда.
Наведення постановки задачі оптимального розміщення неорієнтованих плоских геометричних об’єктів з кусочно-нелінійними границями. Розгляд випадку, коли об’єкти розміщення можуть бути як орієнтованими, так і неорієнтованими. Геометричне проектування карт.
Понятие о симплекс-методе и способы нахождения базисного решения. Определение крайней точки выпуклого множества. Преобразование Гаусса-Жордана и его применение. Симплекс-метод с искусственным базисом (М-метод). Исследование функции f(х) на экстремум.
Математичне формулювання задачі про обсяги поставок споживачу від постачальника; знаходження мінімуму функції. Використання алгоритму транспортної задачі лінійного програмування. Розподіл ресурсів постачальника. Метод мінімального елементу в матриці.
Исследование алгоритмов решения нестационарных линейных дифференциальных уравнений в коммутативных гиперкомплексных числовых системах различной размерности. Изучение дифференцирования экспонентов от гиперкомплексного переменного по скалярному аргументу.
Изучение направлений при проектировании дискретных преобразователей. Исследование булевых функций от четырех аргументов, их минимизация и оценка сложности. Решение задач, построение библиотеки близких формул для булевых функций от четырех аргументов.
Метрология как отрасль науки, изучающая измерения. Характеристика разновидностей методов сравнения с мерой. Сущность понятия грубой погрешности (промаха). Порядок построения вариационного ряда. Процесс построения графика статистического распределения.
Способы построения вариационных рядов в статистическом анализе. Интервальный и дискретный вариационные ряды. Эмпирическая функция распределения. Доверительные интервалы для истинного значения измеряемой величины и среднего квадратического отклонения.
- 3100. Построение гиперболы
Исчисление коэффициентов, определяющих гиперболу или семейство прямых. Уравнения равносторонней гиперболы и споряженных гипербол. Геометрическое место точек, равноудаленных от директрисы и точки фокуса. Упрощение общего уравнения второй степени.
Разработка средств и методов построения формального описания будущего контента - одно из необходимых условий, которые должны выполняться при создании информационного образовательного пространства. Основные направления использования графовых моделей.
Оценка параметров генеральной совокупности. Итоги выборочных наблюдений. Доверительный интервал как термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки.
Построение классической линейной модели множественной регрессии. Анализ матриц коэффициентов корреляции на наличие мультиколлинеарности. Анализ линейной модели парной регрессии с наиболее значимым фактором. Влиянием значимых факторов на результат.
Цели, факторы, интервалы регрессии. Начальное формирование и оптимизация уравнений. Практическое построение регрессионных моделей. Примеры построения моделей двумерной и четырехмерной функционально-факторной нелинейной регрессии программой "Тренды ФСП-1".
Рассмотрение общей структуры методов поиска глобального оптимума. Характеристика классификации основных методов глобальной оптимизации по методологическому критерию. Особенность выбора и обоснования метода глобального поиска для прикладной задачи.
Понятие ассоциативного и коммутативного кольца. Использование термина кольцо с единицей при наличии нейтрального элемента для умножения. Построение поля, примеры колец и полей. Кольцо многочленов над полем. Делимость многочленов, разложение на множители.
В работе рассматривается способ формообразования кривых с помощью биквадратичного преобразования Г4, где прообразом задается окружность. Для получения кривых различной формы соответственно будет изменяться расположение прообраза-окружности на плоскости.
Причинно-следственная диаграмма (диаграмма Исикавы). Методика построения гистограммы. Диаграмма Парето и ее характеристика. Сигнальные признаки на контрольной карте, при которых следует производить коррекцию процесса. Нижний, средний и верхний квартили.
Изучение основных этапов и принципов построения математической модели эксплуатации сельскохозяйственной техники как сложной технической системы. Использование метода подстановок. Согласия Колмогорова и Пирсона, широко используемые при анализе надежности.
Исследование задачи допустимого синтеза инерционных управлений. Получение оценок для производной функции управляемости и построение области разрешимости проекта. Особенность решения задания стабилизации. Основная характеристика нахождения траектории.
Исследование подходов к построению графовых моделей систем учебных заданий. Применение графового моделирования в процессе обучения в рамках информационного образовательного пространства. Проблема автоматизированного отбора оптимальных учебных заданий.
Суть метода нахождения обратных функций. Основные пути построения таких обратных функций как логарифм, гиперболические и тригонометрические арксинус и арккосинус. Примеры построения обратных функций для гиперкомплексной числовой системы 4-го порядка.
Анализ систем сингулярно возмущенных обыкновенных дифференциальных уравнений. Рассмотрение системы сингулярно возмущенных обыкновенных дифференциальных уравнений с аналитическими функциями в комплексной области. Области притяжения вырожденной системы.
Формализация задач о построении оптимальных выпуклых пространственных тел в форме задач оптимального управления и нелинейного программирования. Исследование свойств полученных задач. Разработка и реализация аналитических и численных методов их решения.
Строгое доказательство трансцендентности числа Pi, выведенное в 1882 году немецким математиком Ф. Линдеманом. Построение отрезка, равного числу Pi, исходя из радиуса окружности. Среднее геометрическое сторон прямоугольника, решение квадратуры круга.
Особенности и способы построения перспективных проекций на плоскости. Исходные ортогональные проекции и необходимые построения. Построение перспективы второй окружности, расположенной в параллельной плоскости. Основы построения теней в перспективе.
История зарождения перспективного изображения с использованием аксонометрии. Особенности центральной сферической проекции при зрительном восприятии чертежа. Свойства перспективных изображений. Правила расположения точек в перпендикулярной плоскости.
Правильный выбор точки зрения угла зрения и задания картинной плоскости. Особенности построения перспективы методом архитекторов на примере жилого дома несложной формы с двухскатной кровлей, выступающей за плоскости стены цоколем и крыльцом со ступенями.
- 3119. Построение пространства прямой перспективы на примере рисунка с натуры группы геометрических тел
Линейно-конструктивный рисунок группы геометрических тел. Объемно-пространственные построения в рисунке с натуры. Соединение горизонтального и фронтального видов линии горизонта. Технологическая последовательность объемно-пространственных построений.
Определения, обозначения и конкретные случаи размеченных областей. Примеры ориентированных размеченных областей, построенных с применением гармонических функций. Линейное сингулярно возмущенное обыкновенное дифференциальное уравнение первого порядка.