Нескінченно малі та великі величини. Властивості нескінченно малих, їх зв’язок з нескінченно великими. Теореми про існування границь. Границя послідовності та функції. Приклади знаходження деяких границь. Границя, пов’язана з натуральним логарифмом.
- 782. Границя функції
Поняття про границі функції: числова послідовність, нескінченно великі змінні величини, границя функції в точці, нескінченно малі величини, їхні властивості. Основні теореми про границі. Обчислення границі функції: розкриття невизначеностей границь.
- 783. Граничні теореми для бакстерівських сум випадкових функцій та їх застосування для оцінок параметрів
Умови збіжності бакстерівських сум від приростів загального виду гауссових випадкових полів. Теорема Леві-Бакстера для сумісно субгауссового випадкового поля. Симетричний стохастичний інтеграл з диференціалом від випадкового процесу бакстерівського типу.
- 784. Граничні теореми для бакстерівських сум випадкових функцій та їх застосування для оцінок параметрів
Дослідження основних умов збіжності бакстерівських сум випадкових процесів і полів та їх застосування для оцінювання параметрів кореляційних функцій. Детермінована стала послідовності білінійних форм. Вивчення загального виду гауссових випадкових полів.
Аналіз характеру функціонування рідинних і нестандартних керованих систем та встановлення умов існування стаціонарного режиму. Поняття узагальненого пуассонівського процесу та характеристика рівняння Ланжевіна в умовах великого та малого завантаження.
Отримання граничних теорем для сум незалежних випадкових величин, якi складають фундамент теорії ймовірностей. Теореми для сум незалежних випадкових елементів зі значеннями в абстрактних просторах та для випадкових елементiв з операторними нормуваннями.
Гауссівські та негауссівські граничні розподіли перенормованих оцінок найменших квадратів коефіцієнтів регресії випадкових процесів із сильною залежністю у випадку дискретного часу. Метод оцiнювання коефiцiєнта регресiї стацiонарних випадкових процесiв.
Дослідження теорем про великі відхилення для логарифму відношення правдоподібності у задачі розрізнення процесів нормальної авторегресії. Застосування теореми аналізу поведінки ймовірностей помилок першого та другого роду критерію Неймана-Пірсона.
Розробка основних гранично-елементних ітераційних алгоритмів для розв’язування задач ідентифікації геометричних параметрів тунельної циліндричної порожнини в довгому циліндричному тілі. Нагрівання тіла зосередженими стаціонарними тепловими потоками.
Вычислены матрицы Римана первого и второго рода гиперболической системы уравнений теплопроводности. Построено решение задачи Коши для гиперболической системы уравнений. Решение задачи граничного управления процессом теплопереноса в однородном теле.
Опис властивостей кілець, що визначені деякими наперед радикалами. Дослідження структури гратки I-радикалів. Вивчення кільця за допомогою напівпростих та ідеальних скрутів. Ідемпотентні радикали, утворені певними класами простих лівих модулів кілець.
Проведение исследования концепции стратификации граф-моделей, которая позволяет формировать и исследовать широкий спектр новых отношений структурного сходства систем. Главная особенность обобщения подструктурного подхода к анализу подобия орграфов.
Описание графической теории и алгоритма машинного определения кривизны плоской кривой. Дополнительный метод решения инженерных задач через графические вычисления. Определение параметров кривизны (эволюты) эллипса ввиду отсутствия его нулевых точек.
Основные виды графических изображений, используемые при анализе результатов исследования. Применение картограмм в практической деятельности врача. Отображение динамики явлений на линейных и столбиковых диаграммах. Группы ошибок статистического анализа.
Методика решения задач линейного программирования графическим методом. В ограничениях задачи замена знаков неравенств на знаки точных равенств и построение соответствующих прямых. Оптимальное решение задачи, определение области допустимых решений.
История применения графического метода для решения задач. Рассмотрение различных типов задач, методом решения которых может являться график. Основные приемы решения задач с помощью графического метода. Преимущества и недостатки графического метода.
- 797. Графическое описание
График как наглядное изображение статистических величин и их соотношений при помощи геометрических точек, линий, фигур или географических картосхем. Сферы и особенности их применения, порядок и принципы формирования, классификация и типы, свойства.
Ознайомлення з властивостями алгебраїчних кривих другого порядку: еліпса, гіперболи та параболи. Визначення особливостей кривих третього порядку: конхоїда, епіциклоїда та гіпоциклоїда. Дослідження методів побудови параболічної та логарифмічної спіралі.
Закріплення знань учнів про зміст "графіку залежності" та спосіб побудови графіків руху та зміни температур. Відпрацювання обчислювальних навичок учнів з даної проблематики. Способи вирішення типових задач по темі " Графіки залежності між величинами".
Закріплення знань учнів про зміст "графіку залежності" та спосіб побудови графіків руху та зміни температур. Вироблення вмінь будувати графіки залежності за даними таблиці відповідних значень величин, а також умінь "читати" побудовані графіки залежностей.
Дослідження можливостей Matlab для побудови графіків функцій та візуалізації даних. Використання команди plot для побудови графіків функцій у декартовій системі координат. Приклади простої програми для побудови графіків функцій з різним стилем подання.
Геометрична інтерпретація задач лінійного програмування. Застосування графічного методу для розв’язування двовимірних та деяких тривимірних задач та обмеження щодо його використання. Вивчення алгоритму графічного методу та прикладів розв’язування ЗЛП.
- 803. Графы в математике
Теория графов как способ решения задач. Задачи о кёнигсбергских мостах Эйлера. Способы представления графа. Эйлерова линия, проходящая по всем ребрам в точности по одному разу. Зарождение еще одной области в математики в ходе решения головоломок.
Определения и теоремы теории графов, подграфы. Операции над графами и степени их вершин. Цепи, циклы и компоненты. Применение теории графов в школьном курсе математики, в задачах управления дорожным движением, химии, биологии, физике. Графы и информация.
Рассмотрение научного вклада Григория Перельмана в математику Советского Союза. Топология многообразий, исследование свойств поверхностей. Новаторская работа Перельмана, посвящённая решению одного из частных случаев гипотезы геометризации Тёрстона.
Характеристика грубых погрешностей в результатах измерения, которые решаются методами математической статистики. Рассмотрение условий применения критерия Шарлье. Расчет выборочного среднеквадратичного отклонения. Анализ критерия Граббса—Смирнова.
Властивості, будова та класифікація груп локальних ізометрій границь кореневих дерев, жорсткість слабо гіллястих груп. Побудова теорії груп локальних ізометрій канторових просторів та її застосування до класифікації локально скінченних груп 1-типу.
Опис узагальнено розв’язних груп, кожна підгрупа нескінченного спеціального та тотального рангу яких є наближено нормальною. Особливості радикальних груп, кожна підгрупа нескінченного секційного рангу яких є наближено нормальною (майже нормальною).
Необхідні умови того, щоб скінченна 2-група G, породжена елементом і двома інволюціями, мала нормальні нормалізатори усіх підгруп. Доведення ряду теорем, які розкривають будову скінченних 2-груп, у яких нормалізатори підгруп нормальні та мають доповнення.
Скінченне розширення підгрупи, комутант якої міститься у її центрі. Конструктивний опис ненільпотентних об’єктів дослідження та нільпотентних об’єктів дослідження при умові, що їх фактори по комутантах є прямими добутками локально циклічних груп.