• Дослідження та систематизація основних понять комбінаторики. Характеристика методів комбінаторного аналізу та ілюстрація їх застосування на прикладах. Розгляд сутності та результатів теорії графів. Аналіз галузей застосування дискретної математики.

    книга (6,1 M)
  • Множества, операции над ними. Соответствия и функции. Элементы общей алгебры. Различные виды алгебраических структур. Элементы математической логики. Логические функции. Булевы алгебры и теория множеств. Язык логики предикатов. Классы графов и их частей.

    курс лекций (1,1 M)
  • Изучение математических моделей объектов, процессов и зависимостей, решаемых дискретной математикой. Анализ элементов теории множеств. Понятие и применение математической логики. Определение алгебраических операций. Теория графического представления.

    учебное пособие (1,2 M)
  • Операции над множествами. Понятия и определения отношений и функций. Характеристики графов, алгоритм Форда–Беллмана нахождения минимального пути. Минимальные остовные деревья нагруженных графов. Формулы логики булевых функций, преобразования формул.

    методичка (693,2 K)
  • Создание таблицы значений функции алгебры логики, способы нахождения всех существенных переменных. Построение полинома Жегалкина функции. Определение совершенной дизъюнктивной нормальной формы. Особенности создания связного ориентированного графа.

    контрольная работа (193,9 K)
  • Задача на нахождение кратчайшего пути. Определение нижней границы гамильтоновых циклов множества с помощью операции редукции. Изучение процесса разложения матрицы по маршрутным строкам. Определение, изображение оптимальной длины маршрута коммивояжёра.

    контрольная работа (29,8 K)
  • Характеристика основных методов упрочения выражения, сущность закона отрицания и дистрибутирования. Порядок решения задач с помощью диаграммы Эйлера-Венна. Особенности построения таблицы истинности. Матрицы инцидентности и смежности, их сущность.

    задача (250,8 K)
  • Множества и операции над ними. Функции и формулы алгебры логики. Важнейшие замкнутые классы. Обобщение понятия равенства, отношение упорядоченности. Принцип двойственной записи вычислений. Построение совершенных нормальных форм и закон коммутативности.

    методичка (1,3 M)
  • Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.

    учебное пособие (733,9 K)
  • Свойства, которыми обладают бинарные отношения на множестве натуральных чисел. Область определения предиката. Построение матрицы смежности. Рефлексивное, антисимметричное и транзитивное отношение перпендикулярности на множестве прямых в пространстве.

    контрольная работа (390,2 K)
  • Множества: операции, свойства, уравнения, декартово произведения. Способы описания бинарного отношения. Эквивалентность, понятия комбинаторики. Графы: определения, расширения модели, оптимизационные задачи. Алгебры, группы, изоморфизмы и гомоморфизмы.

    учебное пособие (1,2 M)
  • Определение булевых функций. Замкнутые классы, теорема Поста. Моделирование релейно-контактных схем и сумматоров. Основные положения математической логики. Неформальное определение алгоритма. Конечные автоматы и некоторые классические алгоритмы.

    учебное пособие (1,1 M)
  • Множества и основные операции над множествами. Упорядоченные пары и прямое произведение множеств. Основные законы и формулы комбинаторики. Логика высказываний: основные понятия, формулы, логические операции, составные высказывания и законы логики.

    реферат (86,2 K)
  • Особенность нахождения отношения эквивалентности на множестве А. Построение таблиц истинности для высказываний. Изучение замыкания над множеством булевой функции. Проведение исследования класса линейных функций. Нахождение максимального потока в сети.

    курсовая работа (237,1 K)
  • Изложение методов анализа и синтеза булевых выражений, примеров реализации комбинационных схем, построенных по словесному описанию алгоритма функционирования: булевы преобразования двоичных последовательностей и области применения этих преобразований.

    учебное пособие (250,2 K)
  • Доказывание тождеств в теории множеств. Рассмотрение основных положений комбинаторики. Определение Эйлеровой цепи в неориентированном графе. Решение задач по алгебре логики. Изучение возможностей решения системы уравнений с использованием метода Гаусса.

    контрольная работа (98,6 K)
  • Оценка устойчивости дискретной системы с непрерывным регулятором. Разработка регулятора для устойчивости системы. Оценка силы, действующей на грузы, подвешенные на пружинах. Нахождение передаточной функции объекта и функции регулятора 3-го порядка.

    практическая работа (263,8 K)
  • Розробка методів дискретного визначення кривих ліній на рівномірній сітці за допомогою геометричної інтерпретації математичного апарату одновимірних числових послідовностей за початкових і крайових умов. Методи дискретного геометричного моделювання.

    автореферат (161,3 K)
  • Розробка методів аналізу на осциляції дискретно представлених кривих та методів дискретної згладжуючої апроксимації осцилюючих дискретно представлених геометричних об'єктів. Розробка геометричних моделей розрахунку освітленості і коефіцієнтів світловтрат.

    автореферат (113,5 K)
  • Методи моделювання плоских та просторових кривих ліній. Геометричні властивості і закономірності, що виникають в процесі моделювання кривих за їх натуральними рівняннями. Проектування перехрещень міських вулиць і доріг, рекомендації щодо їх класифікації.

    автореферат (97,9 K)
  • Аналіз проблеми обчислення дискретного логарифма. Алгоритм великого та малого кроку, його характеристика. Алгоритм, базований на обчисленні індексів. Побудова системи рівнянь для знаходження значень логарифмів. Алгоритм Поліга–Хелмана, його аналіз.

    реферат (31,8 K)
  • Аналіз поведінки динамічних систем та визначення напрямків їх удосконалення. Розробка моделей дискретних коливних систем з широким діапазоном динамічних режимів. Створення швидкодіючих та стійких до збурень моделей. Виявлення передбачуваних режимів.

    автореферат (433,7 K)
  • Вивчення впливу включень та порожнин у твердих тілах довільної форми на потенціальні поля різної фізичної природи. Використання методу фіктивних джерел для побудови математичної моделі. Проведення числових досліджень задач при трьох схемах зондування.

    автореферат (65,9 K)
  • Постановка и решение задачи дискретного адаптивного управления на основе простейшей математической модели инфекционного заболевания, которая представляет собой систему нелинейных обыкновенных дифференциальных уравнений с запаздывающим аргументом.

    статья (171,1 K)
  • Алгоритмы цифровой обработки сигналов. Эквивалентная запись, базисные синусоиды. Комплексное, двумерное дискретное преобразование Фурье, тождества Эйлера. Сигнал и его спектр. Ортогональность функций. Реконструкция сигнала по ограниченному ряду.

    реферат (2,0 M)
  • Определение коэффициентов Фурье дискретной последовательности. Изменение фазового спектра при циклическом сдвиге отсчетов (инвариантный сдвиг). Примеры записи и вычисления коэффициентов Фурье для заданной последовательности, вычисление корней неравенства.

    контрольная работа (43,9 K)
  • Исследование дискретных бризеров в скалярных динамических моделях на плоской квадратной решетке. Особенности построения симметрийно-обусловленных инвариантных многообразий. Показатели устойчивости. Примеры расщепления системы вариационных уравнений.

    методичка (428,5 K)
  • Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.

    курс лекций (444,7 K)
  • Применение закона распределения дискретной случайной величины. Соответствие между возможными значениями и их вероятностями. Функция распределения вероятностей случайной величины. Плотность распределения вероятностей дискретной случайной величины.

    реферат (247,1 K)
  • Случайная величина как величина, которая в результате опыта принимает заранее неизвестное численное значение. Непрерывные и дискретные случайные величины. Суммарная вероятность. Расчет различных вероятностей и построение многоугольника распределения.

    презентация (159,1 K)