Случайные величины, их понятие. Законы распределений и их характеристика. Биномиальное распределение (схема Бернулли). Дискретные случайные величины. Распределение Пуассона, геометрическое распределение. Числовые характеристики, математическое ожидание.
Рассмотрение основ решения задач различия объектов наблюдения по определенным признакам. Описание целей дискриминантного метода. Разбиение объектов выборки методом k-средних на оптимальное количество классов. Прогноз при классификации новых объектов.
- 813. Дисперсионный анализ
Понятие и возникновение дисперсионного анализа, статистические гипотезы проверяемые с помощью него. Критерии Фишера, общая факторная и остаточная дисперсия, схема двухфакторного анализа. Отличительные черты дисперсий. Фундаментальная концепция анализа.
- 814. Дисперсионный анализ
Математическое ожидание нормально распределенной случайной величины. Проверка гипотезы о влиянии фактора на качество объекта на основании пяти измерений для трех уровней фактора методом дисперсионного анализа. Нормальное распределение случайных величин.
- 815. Дисперсионный анализ
Схемы организации исходных данных с двумя и более факторами. Зависимость отклика от качественных и количественных причин. Однофакторная дисперсионная модель. Существенность влияния партий изделий на их качество. Сумма квадратов отклонений наблюдений.
Определение понятия дисперсионного анализа. Создания выборок и проверка нормальности распределения результативного признака. Описание методов однофакторного дисперсионного анализа для несвязанных и связанных выборок, их графическое представление.
Викладення диференціального числення функцій багатьох змінних: визначення та позначення частинних похідних першого порядку та другого порядку певної функції; знаходження частинної похідної за правилами та формулами диференціювання функції однієї змінної.
Функція, її границя та неперервність. Область визначення функції та її геометричний зміст. Похідна та диференціали функцій багатьох змінних. Теорема рівності других мішаних похідних. Означення частинної похідної функції двох змінних по одній з них.
Диференціальні рівняння першого порядку та рівняння з відокремленими змінними, однорідні та лінійні диференціальні рівняння. Рівняння, які зводяться до лінійних. Рівняння Бернуллі та Ріккаті. Рівняння в повних диференціалах. Інтегруючий множник.
Поняття однорідного рівняння та функції, сутність однорідного диференціального рівняння. Задача про параболічний прожектор: мередіальний переріз поверхні обертання та заміна змінної розв’язання диференціального рівняння з відокремлюваними змінними.
Поняття диференціального рівняння, задача, ознаки і теорема О.Л. Коші, її геометричний зміст. Ознаки та приклади загального або частинного розв’язку (інтеграли) диференціального рівняння першого порядку та з відокремленими і відокремлюваними змінними.
Дослідження розв’язностей та побудова розв’язків задач з нелокальними крайовими умовами за часовою змінною для рівнянь та систем рівнянь із частинними похідними першого порядку за часовою змінною і порядку за просторовими змінними сталими коефіцієнтами.
Рассмотрена задача о дифракции антиплоских волн сдвига (SH-волн) на неподвижной жесткой полосе, скрепленной с поверхностью упругого полупространства. Порядок решения парных интегральных уравнений и интегральных уравнений Фредгольма второго рода.
Дослiдження властивостей узагальнених дифузiйних процесiв в нескiнченновимiрному фазовому просторi. Дифузiйний процес, вектор переносу i матриця дифузiї. Спiльний розподiл багатовимiрного косого броунівського руху i його локального часу на гiперплощинi.
Определение понятия дифференциала n-го порядка. Исследование основных способов вычисления дифференциалов высших порядков. Нахождение дифференциала высшего порядка функции одной и нескольких переменных. Неинвариантность дифференциалов высшего порядка.
Понятия общей топологии. Многообразия и касательные вектора. Тензоры: первые определения и свойства. Обычное частное дифференцирование. Сравнение касательных векторов в разных точках. Интегрирование дифференциальных форм. Расчет ковариантной производной.
Введение в математический анализ. Дифференциальное исчисление функций одной и нескольких переменных. Исследование характера точек разрыва для заданной функции. Определение частных производных второго порядка, интервалов выпуклости и вогнутости функции.
Применение правила Лопиталя, пример нахождения асимптоты функции. Понятие точки глобального экстремума, формула её расчета. Вычисление локального экстремума и построение эскиза графика функции, её исследование на монотонность. Дифференциальное исчисление.
Понятие множества, операции над ними. Основные элементарные функции, их графики. Односторонние пределы функции одной переменной. Бесконечно малые функции, их классификация. Непрерывность и дифференцируемость. Линии уровня и градиент функции переменных.
Интегрирование линейного дифференциального уравнения с помощью степенных рядов, метод неопределенного коэффициента. Синтез управления не более, чем с одним переключением в управляемой системе второго порядка. Малые возмущения системы линейных уравнений.
Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.
Дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Однородные и линейные уравнения. Теорема существования и единственности решения дифференциального уравнения. Линейное однородное уравнение с постоянными коэффициентами.
Теорема о существовании единственности решения дифференциальных уравнений различных порядка с разделяющимися переменными. Решение систем с постоянными коэффициентами. Линейно независимые и зависимые системы функций. Определитель Вронского и его свойства.
Изучение понятия дифференциального уравнения. Комбинаций производных функций и независимые переменные. Определения вида постоянных и неопределенных функций. Дифференциальное исчисление, созданное Лейбницем и Ньютоном (1642—1727). Формула бином Ньютона.
Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.
Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.
Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.
Описание биологических обществ с помощью дифференциальных уравнений. Химическая кинетика и выражение химических реакций с помощью так называемых стехиометрических уравнений. Дифференциальные уравнения в медицине на примере математической модели эпидемии.
Применение дифференциальных уравнений в различных областях науки. Исторические личности и этапы развития дифференциальных уравнений. Практическое применение их в медицине, при создании аппарата "искусственная почка". Дифференциальные уравнения в биологии.
Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.