• Дослідження розв’язностей та побудова розв’язків задач з нелокальними крайовими умовами за часовою змінною для рівнянь та систем рівнянь із частинними похідними першого порядку за часовою змінною і порядку за просторовими змінними сталими коефіцієнтами.

    автореферат (30,7 K)
  • Рассмотрена задача о дифракции антиплоских волн сдвига (SH-волн) на неподвижной жесткой полосе, скрепленной с поверхностью упругого полупространства. Порядок решения парных интегральных уравнений и интегральных уравнений Фредгольма второго рода.

    статья (3,4 M)
  • Дослiдження властивостей узагальнених дифузiйних процесiв в нескiнченновимiрному фазовому просторi. Дифузiйний процес, вектор переносу i матриця дифузiї. Спiльний розподiл багатовимiрного косого броунівського руху i його локального часу на гiперплощинi.

    автореферат (127,9 K)
  • Понятие дифференциала функции как суммы произведений частных производных этой функции на приращения соответствующих независимых переменных. Особенности и суть условия дифференцируемости функции нескольких переменных и его математическое представление.

    презентация (29,6 K)
  • Определение понятия дифференциала n-го порядка. Исследование основных способов вычисления дифференциалов высших порядков. Нахождение дифференциала высшего порядка функции одной и нескольких переменных. Неинвариантность дифференциалов высшего порядка.

    презентация (77,1 K)
  • Понятия общей топологии. Многообразия и касательные вектора. Тензоры: первые определения и свойства. Обычное частное дифференцирование. Сравнение касательных векторов в разных точках. Интегрирование дифференциальных форм. Расчет ковариантной производной.

    курс лекций (307,1 K)
  • Исчисление функций одной и нескольких переменных, его виды (дифференциальное, интегральное): правило Лопиталя, схема исследования функции и построения ее графика, скалярное поле, неопределенный интеграл. Кратные интегралы. Элементы теории векторных полей.

    контрольная работа (165,7 K)
  • Введение в математический анализ. Дифференциальное исчисление функций одной и нескольких переменных. Исследование характера точек разрыва для заданной функции. Определение частных производных второго порядка, интервалов выпуклости и вогнутости функции.

    контрольная работа (483,4 K)
  • Применение правила Лопиталя, пример нахождения асимптоты функции. Понятие точки глобального экстремума, формула её расчета. Вычисление локального экстремума и построение эскиза графика функции, её исследование на монотонность. Дифференциальное исчисление.

    контрольная работа (174,2 K)
  • Понятие множества, операции над ними. Основные элементарные функции, их графики. Односторонние пределы функции одной переменной. Бесконечно малые функции, их классификация. Непрерывность и дифференцируемость. Линии уровня и градиент функции переменных.

    учебное пособие (1,8 M)
  • Математический поиск пределов функций. Расчет асимптот, промежутков возрастания и убывания, максимумов и минимумов, направлений выпуклости и перегибов графика. Использование формул правил дифференцирования и таблицы производных элементарных функций.

    контрольная работа (152,6 K)
  • Интегрирование линейного дифференциального уравнения с помощью степенных рядов, метод неопределенного коэффициента. Синтез управления не более, чем с одним переключением в управляемой системе второго порядка. Малые возмущения системы линейных уравнений.

    курсовая работа (253,0 K)
  • Характеристика истории становления, роли математического моделирования и прикладной математики в развитии современной науки. Анализ понятия и сущности математической модели, целей и методов моделирования. Особенности дифференциальных уравнений в физике.

    реферат (179,0 K)
  • Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.

    реферат (139,8 K)
  • Дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Однородные и линейные уравнения. Теорема существования и единственности решения дифференциального уравнения. Линейное однородное уравнение с постоянными коэффициентами.

    курсовая работа (279,6 K)
  • Теорема о существовании единственности решения дифференциальных уравнений различных порядка с разделяющимися переменными. Решение систем с постоянными коэффициентами. Линейно независимые и зависимые системы функций. Определитель Вронского и его свойства.

    курс лекций (239,8 K)
  • Общие понятия, определения и примеры дифференциальных уравнений. Дифференциальные уравнения I порядка, задача Коши. Уравнения с разделяющимися переменными, линейные уравнения. Теорема существования и единственности решения дифференциального уравнения.

    курсовая работа (185,8 K)
  • Изучение понятия дифференциального уравнения. Комбинаций производных функций и независимые переменные. Определения вида постоянных и неопределенных функций. Дифференциальное исчисление, созданное Лейбницем и Ньютоном (1642—1727). Формула бином Ньютона.

    презентация (462,3 K)
  • Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.

    презентация (191,2 K)
  • Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.

    курсовая работа (1,3 M)
  • Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.

    шпаргалка (737,7 K)
  • Описание биологических обществ с помощью дифференциальных уравнений. Химическая кинетика и выражение химических реакций с помощью так называемых стехиометрических уравнений. Дифференциальные уравнения в медицине на примере математической модели эпидемии.

    курсовая работа (67,4 K)
  • Применение дифференциальных уравнений в различных областях науки. Исторические личности и этапы развития дифференциальных уравнений. Практическое применение их в медицине, при создании аппарата "искусственная почка". Дифференциальные уравнения в биологии.

    презентация (9,9 M)
  • Классификация дифференциальных уравнений в частных производных. Решение линейных дифференциальных уравнений второго порядка. Построение различных схем метода сеток в случае уравнений в частных производных зависит от типа уравнений, вида граничных условий.

    доклад (91,5 K)
  • Теорема С.В. Ковалевской о существовании и единственности решения уравнения в частных производных. Доказательство положения об общем определении квазилинейного равенства. Способ построения задачи Коши с помощью геометрического смысла характеристик.

    курсовая работа (278,5 K)
  • Рассмотрение уравнений второго порядка, разрешенных относительно второй производной. Формулировка и доказательство теоремы Коши (о существовании и единственности решения дифференциального уравнения). Геометрический смысл теоремы, ее общее решение.

    презентация (70,0 K)
  • Три вида уравнений второго порядка, допускающих понижение степени. Порядок введения новой функции. Условие преобразования исходного уравнения в неполное уравнение первого порядка. Пример решения дифференциального уравнения заданного вида, расчет функции.

    презентация (104,2 K)
  • Вид дифференциального уравнения, разрешимого относительно старшей производной, его решение (функция у(х), которая обращает его в тождество). Формулировка теоремы Коши, утверждающей существование частного решения системы, ее геометрический смысл.

    презентация (77,3 K)
  • Применение математических методов в деятельности среднего медицинского персонала. Линейность или нелинейность дифференциальных уравнений. Дифференциальные уравнения с разделяющимися переменными. Моделирование с применением дифференциальных уравнений.

    реферат (61,6 K)
  • Рассмотрение линейных дифференциальных уравнений первого порядка. Методы вариации постоянной, использование интегрирующего множителя. Порядок приведения уравнения Риккати к формуле Бернулли. Выявление проблем в применении дифференциального исчисления.

    курсовая работа (245,6 K)