Аналіз існуючих методів апроксимації заданої ДПК. Спосіб корекції кінцево-різницевих характеристик точкового ряду заданої на рівномірній сітці ДПК з урахуванням її перших і других різниць. Розробка способу опорних ДПК для апроксимації за критерієм НГВ.
Розробка способів формування на основі неосцилюючого точкового ряду лінійного обводу з закономірною зміною значень кривини стичних кіл. Аналіз неосцилюючого точкового ряду з метою визначення можливості конструювання на його основі кривої з зміною значень.
- 903. Дискретна математика
Множини та операції з ними. Основний принцип комбінаторики, правило множини. Декартів добуток двох множин. Біном Ньютона та біноміальні тотожності. Мала теорема Ферма. Шпернерові сімейства та теорема Шпернера. Перестановки та комбінації з повторенням.
- 904. Дискретна математика
Множина як деякий набір об’єктів, які не повторюються і називаються елементами, існуючі теорії та концепції. Графи та головні дії над ними. Рекурентні булеві функції, теорія кінцевих автоматів. Задача аналізу кінцевого автомата з пам’яттю, її рішення.
- 905. Дискретна математика
Дослідження та систематизація основних понять комбінаторики. Характеристика методів комбінаторного аналізу та ілюстрація їх застосування на прикладах. Розгляд сутності та результатів теорії графів. Аналіз галузей застосування дискретної математики.
- 906. Дискретна математика
Розв'язання задач з теорії множин та математичної логіки за допомогою діаграм Ейлера-Вена. Аналіз поняття істинності висловлювань. Визначення характеристик графа, побудова матриці інцидентності. Побудова амплітудно–частотної характеристики сигналу.
- 907. Дискретная алгебра
Множества, операции над ними. Соответствия и функции. Элементы общей алгебры. Различные виды алгебраических структур. Элементы математической логики. Логические функции. Булевы алгебры и теория множеств. Язык логики предикатов. Классы графов и их частей.
Изучение математических моделей объектов, процессов и зависимостей, решаемых дискретной математикой. Анализ элементов теории множеств. Понятие и применение математической логики. Определение алгебраических операций. Теория графического представления.
Операции над множествами. Понятия и определения отношений и функций. Характеристики графов, алгоритм Форда–Беллмана нахождения минимального пути. Минимальные остовные деревья нагруженных графов. Формулы логики булевых функций, преобразования формул.
Создание таблицы значений функции алгебры логики, способы нахождения всех существенных переменных. Построение полинома Жегалкина функции. Определение совершенной дизъюнктивной нормальной формы. Особенности создания связного ориентированного графа.
Основы теории множеств, переключательных функций, комбинаторного анализа и теории графов. Диаграммы Эйлера, операции над множествами. Бинарные отношения и отображения. Свойства элементарных булевых функций. Основные понятия и определения комбинаторики.
Свойства, которыми обладают бинарные отношения на множестве натуральных чисел. Область определения предиката. Построение матрицы смежности. Рефлексивное, антисимметричное и транзитивное отношение перпендикулярности на множестве прямых в пространстве.
Множества: операции, свойства, уравнения, декартово произведения. Способы описания бинарного отношения. Эквивалентность, понятия комбинаторики. Графы: определения, расширения модели, оптимизационные задачи. Алгебры, группы, изоморфизмы и гомоморфизмы.
Задача на нахождение кратчайшего пути. Определение нижней границы гамильтоновых циклов множества с помощью операции редукции. Изучение процесса разложения матрицы по маршрутным строкам. Определение, изображение оптимальной длины маршрута коммивояжёра.
Рассмотрение элементов теории графов. Характеристика множеств и операций над ними. Основные законы комбинаторики. Основы построения матрицы смежности. Геометрическая реализация графов. Исследование ключевых особенностей логики высказываний и операций.
Характеристика основных методов упрочения выражения, сущность закона отрицания и дистрибутирования. Порядок решения задач с помощью диаграммы Эйлера-Венна. Особенности построения таблицы истинности. Матрицы инцидентности и смежности, их сущность.
Множества и операции над ними. Функции и формулы алгебры логики. Важнейшие замкнутые классы. Обобщение понятия равенства, отношение упорядоченности. Принцип двойственной записи вычислений. Построение совершенных нормальных форм и закон коммутативности.
Определение булевых функций. Замкнутые классы, теорема Поста. Моделирование релейно-контактных схем и сумматоров. Основные положения математической логики. Неформальное определение алгоритма. Конечные автоматы и некоторые классические алгоритмы.
Множества и основные операции над множествами. Упорядоченные пары и прямое произведение множеств. Основные законы и формулы комбинаторики. Логика высказываний: основные понятия, формулы, логические операции, составные высказывания и законы логики.
Особенность нахождения отношения эквивалентности на множестве А. Построение таблиц истинности для высказываний. Изучение замыкания над множеством булевой функции. Проведение исследования класса линейных функций. Нахождение максимального потока в сети.
Изложение методов анализа и синтеза булевых выражений, примеров реализации комбинационных схем, построенных по словесному описанию алгоритма функционирования: булевы преобразования двоичных последовательностей и области применения этих преобразований.
Доказывание тождеств в теории множеств. Рассмотрение основных положений комбинаторики. Определение Эйлеровой цепи в неориентированном графе. Решение задач по алгебре логики. Изучение возможностей решения системы уравнений с использованием метода Гаусса.
- 923. Дискретная система
Оценка устойчивости дискретной системы с непрерывным регулятором. Разработка регулятора для устойчивости системы. Оценка силы, действующей на грузы, подвешенные на пружинах. Нахождение передаточной функции объекта и функции регулятора 3-го порядка.
Общая теория о величинах, значение которых изменяются скачками. Построение многоугольника вероятностей. Биномиальный и пуассоновский законы дискретной случайной величины. Свойства системы математического ожидания. Геометрический закон распределения.
Розробка методів дискретного визначення кривих ліній на рівномірній сітці за допомогою геометричної інтерпретації математичного апарату одновимірних числових послідовностей за початкових і крайових умов. Методи дискретного геометричного моделювання.
- 926. Дискретне геометричне моделювання скалярних і векторних полів стосовно будівельної світлотехніки
Розробка методів аналізу на осциляції дискретно представлених кривих та методів дискретної згладжуючої апроксимації осцилюючих дискретно представлених геометричних об'єктів. Розробка геометричних моделей розрахунку освітленості і коефіцієнтів світловтрат.
Методи моделювання плоских та просторових кривих ліній. Геометричні властивості і закономірності, що виникають в процесі моделювання кривих за їх натуральними рівняннями. Проектування перехрещень міських вулиць і доріг, рекомендації щодо їх класифікації.
- 928. Дискретний логарифм
Аналіз проблеми обчислення дискретного логарифма. Алгоритм великого та малого кроку, його характеристика. Алгоритм, базований на обчисленні індексів. Побудова системи рівнянь для знаходження значень логарифмів. Алгоритм Поліга–Хелмана, його аналіз.
Аналіз поведінки динамічних систем та визначення напрямків їх удосконалення. Розробка моделей дискретних коливних систем з широким діапазоном динамічних режимів. Створення швидкодіючих та стійких до збурень моделей. Виявлення передбачуваних режимів.
Вивчення впливу включень та порожнин у твердих тілах довільної форми на потенціальні поля різної фізичної природи. Використання методу фіктивних джерел для побудови математичної моделі. Проведення числових досліджень задач при трьох схемах зондування.