Анализ геометрических задач, приводящих к дифференциальным уравнениям: задача о нахождении кривой наискорейшего спуска и задача о криволинейной трапеции с наибольшей площадью. Решение дифференциального уравнения, описывающее эволюцию некоторого процесса.
Анализ сущности синтеза систем автоматического управления как определения состава, структуры системы, параметров ее устройств и технических средств реализации. Изучение методов синтеза, процесса создания, схемы синтеза систем автоматического управления.
Понятия бинарного отношения как подмножества декартова произведения. Элементы теории множеств и комбинаторики, три основных метода пересчета, превращение конечного множества в упорядоченное с помощью переписи всех элементов множества в некоторый список.
Интегралы и числовые ряды. Вычисление неопределенного и несобственного интеграла. Разложение функций в ряд Тейлора. Построение графика исходной функции. Решение дифференциального уравнения с помощью операционного исчисления (преобразования Лапласа).
Методы обработки экспериментальных данных. Случайные величины и законы распределения. Основные свойства плотности распределения. Числовые характеристики случайных величин. Кривые распределения с различной степенью крутости. Виды асимметрии распределений.
- 1146. Задачи на вероятность
Определение вероятности того, что на игровом кубике выпадет число очков, большее чем 4. Эксперимент с симметричной монетой. Оценка вероятности того, что спортсмен, который выступает последним, окажется из Швеции. Анализ элементарных событий в опыте.
Ознакомление с основными методами решения логических задач на переливание. Определение и анализ содержания понятия задач на взвешивание. Рассмотрение примеров задач на переливание и взвешивание. Исследование и характеристика способов их решения.
Решение уравнений в целых и рациональных числах как один из самых красивых разделов математики, теоретические и практические сведения которого используются в инженерии, биологии и повседневной жизни. Анализ способов решения линейных диофантовых уравнений.
Изучение школьниками задач на смеси, сплавы и проценты. Характеристика трудностей при решении сюжетно-текстовых заданий. Сравнение учебников математики 5-6 классов на наличие сюжетных задач. Проведение исследования концентраций и процентного содержания.
Основные задачи теории нелинейных систем, методы расчета их устойчивости. Анализ теории устойчивости движения. Изучение реальных характеристик автоматических устройств, выделение типичных нелинейностей. Понятие устойчивости невозмущенного движения.
Трудности решения задач линейного программирования как задач на нахождения значений параметров, обеспечивающих экстремум функции при наличии ограничений. Классификация оптимизации: о пищевом рационе, планировании производства и загрузке оборудования.
Рассмотрение особенностей проведения расчетов временных характеристик. Знакомство с задачами оптимизации на графах. Наиболее распространенные способы построения сетевого графика, анализ проблем. Характеристика полного графа с известными длинами ребер.
Площадь кругового сегмента, стянутого хордой. Длина гипотенузы, лежащей внутри окружности. Площадь фигуры, ограниченной сторонами угла и дугой окружности, заключенной между ними. Уравнение окружности, проходящей через точку и касающейся осей координат.
- 1154. Задачи по статистике
Анализ количества произведенной личными подсобными хозяйствами сельхозпродукции в РФ в 2006 г. Определение уровня экономического развития страны по макроэкономическим показателям за 2008 год. Расчет территориальных индексов цен на яйцо в регионах России.
Примеры решений задач по теории вероятностей. Вероятность попадания людей в ту или иную подгруппу. Вероятность выигрыша ставки. Закон распределения случайной величины. Временные интервалы и критерий согласия Пирсона. Выборочные коэффициенты корреляции.
Анализ решения задач на комбинаторику. Описание задач по классической вероятностной модели, геометрической вероятности. Описание основных формул теории вероятности. Повторные независимые испытания, теорема Бернулли. Дискретные случайные величины.
Решение задач по теме теории вероятности с предоставлением необходимых формул. Результаты наблюдений над случайной величиной и примеры решения задачи на графике. Нахождение середины интервалов и вероятности с использованием таблицы и построением графика.
Понятие и классификация задач затрат, их разновидности и методика решения, исследование количественной части. Правила двойственного соответствия. Задачи выпуска и равновесия, их физическое содержание. Каноническая пара задач. Табличное представление.
- 1159. Задачи с параметрами
Постановка задачи с параметрами. Обобщение уравнений и неравенств с переменными. Решение уравнений и неравенств с одной переменной. Области допустимых значений параметров и область определения уравнения. Эффективные методы решения параметрических задач.
Рассмотрение особенностей решения неравенств с модулем. Изображение на координатной плоскости множества решений неравенства. Закономерности построения графика параболы. Характеристика основных методов решения задач с заданными параметрами неравенств.
- 1161. Задачи с параметром в материалах ГИА и методы их решения (по материалам ЕГЭ за последние 5 лет)
Общее представление о задачах с параметрами в материалах Единого государственного экзамена. Аналитический и графический методы их решения, применение для всех типов уравнений, неравенств. Разработка упражнений, на примерах которых реализуются эти методы.
Подбор задач с параметром, решаемые с помощью аналитического и графического методами. Решение сложных и нестандартных задач по математике. Решение различных задач, позволяющее с помощью математических преобразований упростить выражение и найти ответ.
Использование творческих задач при преподавании дисциплины "черчение". Педагогические методы и информационные технологии преподавания графических дисциплин в учебном заведении. Интеллектуально-личностное развитие учащихся в исследовательской деятельности.
Предмет и задачи теории игр. Принципы линейного программирования и сферы их практического применения. Приведение матричной игры к задаче линейного программирования. Методы и этапы решения матричных игр условием их положительной и произвольной цены.
Определение и сущность производной и ее геометрический смысл. Содержание теоремы о достаточном условии экстремума. Признаки монотонности функций. Определение первообразной, формула Ньютона – Лейбница и геометрический смысл определенного интеграла.
Применение метода, основанного на свойствах симметрических многочленов для решения различных алгебраических задач. Основные понятия теории симметрических многочленов и применение их в решении неравенств, доказательстве тождеств и систем уравнений.
- 1167. Задачі для гіперболічних систем першого порядку та ультрапараболічних систем у необмежених областях
Визначення умов існування та єдиності розв'язку задачі без початкових умов для системи напівлінійних гіперболічних рівнянь першого порядку. Умови коректності задачі в обмеженій області для систем гіперболічних варіаційних нерівностей першого порядку.
Умови існування та єдиності розв'язків мішаних задач та задач без початкових умов для деяких типів еволюційних рівнянь та систем. Існування та єдиність розв'язків для нелінійних ультрапараболічних рівнянь в необмежених за просторовими змінними областях.
Встановлення існування та єдності узагальненого розв’язку задач для нелінійних рівнянь в анізотропних просторах без умов на нескінченності. Дослідження альтернативних випадків, при яких варіаційні нерівності є коректними в певних класах зростання.
Розвиток теорії евклідової комбінаторної оптимізації в геометричному проектуванні шляхом дослідження властивостей спеціальних класів цільових функцій на множині поліпереставлень. Дослідження математичних моделей, розробка методів розв’язання класу задач.