- 1321. Интегральное исчисление
Определение понятия интеграла. Ознакомление с историей появления новой ветви математики - интегрального исчисления. Рассмотрение особенностей отыскивания функций по их производным. Особенности понятий бесконечности, движения и функциональной зависимости.
- 1322. Интегральное исчисление
Понятие первообразной, правила нахождения. Определенный интеграл и его свойства. Площадь криволинейной трапеции. Основное свойство первоообразных. Постоянный множитель, стоящий перед функцией. Интеграл как основное понятие математического анализа.
Изучение основных методов интегрирования простейших иррациональных функций. Определенный интеграл и его приложения. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Вычисление площади плоской фигуры, дуги, объемов тел вращения.
Рассмотрение роли интегрального исчисления в современной науке. Перекрестный и сравнительный анализ влияния интегральных исчислений в математике. Методы выполнения вычисления определенных интегралов. Методы нахождения неопределенных интегралов.
Исчисление общего интеграла дифференциального уравнения первого порядка и методом вариации постоянных (методом Лагранжа). Частное решение однородного линейного дифференциального уравнения второго порядка. Решение системы дифференциальных уравнений.
Применение принципа сведения для систем с многообразием стационарных состояний. Использование метода геометрической декомпозиции для редукции задач об устойчивости при постоянно действующих возмущениях и устойчивости от входа к вектору состояния системы.
Классификация линейных интегральных уравнений. Уравнения Фредгольма и Вольтерра. Краевая задача на собственные значения и собственные функции (задача Штурма-Лиувилля). Поле экстремалей и функция Вейерштрасса. Изопериметрическая задача и задача Лагранжа.
Изложение интегральных характеристик полей: дивергенция и ротор, их физический смысл; криволинейные и поверхностные интегралы, их вычисление; поток и дивергенция векторного поля; циркуляция и ротор векторного поля; теоремы Гаусса-Остроградского и Стокса.
Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.
Рассмотрение сведения интеграла путём выделения полного квадрата в подкоренном выражении в зависимости от знака. Особенности разбиения исходного интеграла на два более простых. Исследование основных методов сведения к интегралу от рациональной функции.
Интегрирование однородного линейного уравнения второго порядка с постоянными коэффициентами методом Эйлера. Система линейно независимых решений и определитель Вронского. Применение явления резонанса. Способы гашения нежелательных вынужденных колебаний.
Основы конструктивной теории интегрирования по проекции на частично ориентированных множествах в пространстве Rn. Критерий интегрируемости по проекции. Формулировка и доказательство теорем. Счетная аддитивность меры по проекции, ее характерные свойства.
Особенности решения задачи нахождения интеграла от функции, которая является иррациональной. Методы выполнения подстановок, которые позволяют привести подынтегральное выражение к рациональному виду, более удобному для интегрирования тех или иных функций.
Рассмотрение теоретических основ алгебры. Теорема о разложении правильной рациональной дроби на сумму простейших дробей. Интегрирование целых рациональных функций. Различные способы нахождения и математического анализа неопределенного интеграла.
Виды интегралов тригонометрических функций. Особенности вычисления их величины при помощи выполнения универсальной тригонометрической подстановки. Определение интегралов с помощью формул, преобразующих произведение тригонометрических функций в сумму.
- 1336. Интегрирование ФКП
Свойства интеграла ФКП. Вычисление криволинейного интеграла от функции действительного переменного. Выделение в подынтегральной функции действительных и мнимых частей. Уравнение отрезка в параметрическом виде. Граничные точки кривой на плоскости.
Двойной интеграл, его свойства. Алгоритм метода интегральной суммы. Задача о вычислении объема цилиндрического бруса. Вычисление площади круга и леминискаты. Вид уравнения поверхности. Цилиндрические и сферические координаты. Пределы интегрирования.
Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.
Интегрирование гиперболических функций. Преобразование произведений синусов и косинусов в суммы. Связь между табличными интегралами и обратными гиперболическими функциями. Расчет суммы разности двух аргументов, основное гиперболическое тождество.
Рассмотрение задачи интегрирования в квадратурах нелинейных уравнений движения системы осцилляторов с двумя степенями свободы, движущейся в потенциальном силовом поле. Стационарные движения системы и их устойчивость. Редуцирование динамических систем.
Анализ главных причин истинности геделева предложения. Связь допущения обоснованности или непротиворечивости формальной системы с неустранимым "прыжком" от размышлений о формальных теориях арифметики к эпистемологическим вопросам об обосновании веры.
Теоретическое расчетное исследование интенсифицированного теплообмена при турбулентном течении теплоносителей с постоянными теплофизическими свойствами в кольцевых каналах с турбулизаторами на внутренней трубе. Создание математической модели теплообмена.
Задача об остовных деревьях с топологическими критериями и интервальными весами. Этапы поиска наилучшего решения интервальной задачи. Численные значения множества допустимых решений и интервальной целевой функции. Формулы для реализации весов ребер графа.
Ознакомление с математическими методами вычислений натуральных чисел и их числового выражения. Быстрое определение процентов. Способы молниеносного умножения. Признаки и проверка делимости на заданное число. Представление значения обыкновенной дроби.
Интерполирование как один из способов приближения функций. Интерполяционная формула Лагранжа. Формула Ньютона. Пример нахождения приближенного значения по интерполяционной формуле Лагранжа, Ньютона для значения заданного аргумента. Код программы Паскаль.
Характеристика процесса интерполирования посредством сплайнов, применяемых в сфере вычислительной математики, с целью нахождения промежуточных значений величины. Обоснование функций и исследование уравнений частичного отрезка кубических сплайнов.
- 1347. Интерполирование функций
Интерполяционная формула Лагранжа и Ньютона. Разработка математического обеспечения. Аналитическое выражение функции f(x). Функциональная зависимость между величинами y и x, описывающая количественную сторону данного явления. Теория приближения функций.
- 1348. Интерполирование функций
Построение интерполяционной функции, удовлетворяющей поставленному условию. Характеристика определителя Вандермонда. Подставление переменной в функцию при известных заданных коэффициентах. Рассмотрение интерполяционных многочленов Лагранжа и Ньютона.
Основополагающее значение задачи интерполяции. Основные методы решения задач численного дифференцирования, интегрирования, решения дифференциальных и интегральных уравнений. Классификация методов приближения. Критерии качества оценки погрешности.
Рассмотрение понятия интерполяции и ее практического применения. Нахождение промежуточных значений величины по имеющемуся дискретному набору известных значений. Экстраполирование функции с использованием первой и второй интерполяционных формул Ньютона.