• Решение уравнений в целых и рациональных числах как один из самых красивых разделов математики, теоретические и практические сведения которого используются в инженерии, биологии и повседневной жизни. Анализ способов решения линейных диофантовых уравнений.

    статья (19,6 K)
  • Основные задачи теории нелинейных систем, методы расчета их устойчивости. Анализ теории устойчивости движения. Изучение реальных характеристик автоматических устройств, выделение типичных нелинейностей. Понятие устойчивости невозмущенного движения.

    реферат (1,4 M)
  • Трудности решения задач линейного программирования как задач на нахождения значений параметров, обеспечивающих экстремум функции при наличии ограничений. Классификация оптимизации: о пищевом рационе, планировании производства и загрузке оборудования.

    контрольная работа (36,6 K)
  • Рассмотрение особенностей проведения расчетов временных характеристик. Знакомство с задачами оптимизации на графах. Наиболее распространенные способы построения сетевого графика, анализ проблем. Характеристика полного графа с известными длинами ребер.

    задача (501,3 K)
  • Анализ количества произведенной личными подсобными хозяйствами сельхозпродукции в РФ в 2006 г. Определение уровня экономического развития страны по макроэкономическим показателям за 2008 год. Расчет территориальных индексов цен на яйцо в регионах России.

    контрольная работа (191,5 K)
  • Примеры решений задач по теории вероятностей. Вероятность попадания людей в ту или иную подгруппу. Вероятность выигрыша ставки. Закон распределения случайной величины. Временные интервалы и критерий согласия Пирсона. Выборочные коэффициенты корреляции.

    контрольная работа (69,2 K)
  • Анализ решения задач на комбинаторику. Описание задач по классической вероятностной модели, геометрической вероятности. Описание основных формул теории вероятности. Повторные независимые испытания, теорема Бернулли. Дискретные случайные величины.

    задача (403,1 K)
  • Решение задач по теме теории вероятности с предоставлением необходимых формул. Результаты наблюдений над случайной величиной и примеры решения задачи на графике. Нахождение середины интервалов и вероятности с использованием таблицы и построением графика.

    контрольная работа (99,3 K)
  • Постановка задачи с параметрами. Обобщение уравнений и неравенств с переменными. Решение уравнений и неравенств с одной переменной. Области допустимых значений параметров и область определения уравнения. Эффективные методы решения параметрических задач.

    лекция (316,3 K)
  • Рассмотрение особенностей решения неравенств с модулем. Изображение на координатной плоскости множества решений неравенства. Закономерности построения графика параболы. Характеристика основных методов решения задач с заданными параметрами неравенств.

    учебное пособие (1,5 M)
  • Общее представление о задачах с параметрами в материалах Единого государственного экзамена. Аналитический и графический методы их решения, применение для всех типов уравнений, неравенств. Разработка упражнений, на примерах которых реализуются эти методы.

    курсовая работа (2,0 M)
  • Подбор задач с параметром, решаемые с помощью аналитического и графического методами. Решение сложных и нестандартных задач по математике. Решение различных задач, позволяющее с помощью математических преобразований упростить выражение и найти ответ.

    курсовая работа (3,0 M)
  • Использование творческих задач при преподавании дисциплины "черчение". Педагогические методы и информационные технологии преподавания графических дисциплин в учебном заведении. Интеллектуально-личностное развитие учащихся в исследовательской деятельности.

    статья (26,6 K)
  • Предмет и задачи теории игр. Принципы линейного программирования и сферы их практического применения. Приведение матричной игры к задаче линейного программирования. Методы и этапы решения матричных игр условием их положительной и произвольной цены.

    курсовая работа (475,1 K)
  • Применение метода, основанного на свойствах симметрических многочленов для решения различных алгебраических задач. Основные понятия теории симметрических многочленов и применение их в решении неравенств, доказательстве тождеств и систем уравнений.

    курсовая работа (146,3 K)
  • Визначення умов існування та єдиності розв'язку задачі без початкових умов для системи напівлінійних гіперболічних рівнянь першого порядку. Умови коректності задачі в обмеженій області для систем гіперболічних варіаційних нерівностей першого порядку.

    автореферат (82,0 K)
  • Умови існування та єдиності розв'язків мішаних задач та задач без початкових умов для деяких типів еволюційних рівнянь та систем. Існування та єдиність розв'язків для нелінійних ультрапараболічних рівнянь в необмежених за просторовими змінними областях.

    автореферат (57,6 K)
  • Встановлення існування та єдності узагальненого розв’язку задач для нелінійних рівнянь в анізотропних просторах без умов на нескінченності. Дослідження альтернативних випадків, при яких варіаційні нерівності є коректними в певних класах зростання.

    автореферат (125,8 K)
  • Розвиток теорії евклідової комбінаторної оптимізації в геометричному проектуванні шляхом дослідження властивостей спеціальних класів цільових функцій на множині поліпереставлень. Дослідження математичних моделей, розробка методів розв’язання класу задач.

    автореферат (361,2 K)
  • Дослідження існування глобальних класичних розв’язків у двофазній багатовимірній задачі Стефана для лінійного та квазілінійного рівнянь теплопровідности в задачах, які описують процеси горіння. Існування класичного розв’язку в стаціонарних задачах.

    автореферат (71,3 K)
  • Вивчення задач з невідомими межами для гіперболічних систем квазілінійних рівнянь першого порядку щодо їхньої локальної й глобальної розв'язності. Рішення гіперболічної задачі Стефана з нелокальними крайовими умовами для системи квазілінійних рівнянь.

    автореферат (860,7 K)
  • Умови неперервної залежності від вихідних даних розв'язків задач з інтегральними умовами для диференціальних, псевдодиференціальних рівнянь із частинними похідними другого порядку. Методи доведення метричних теорем про оцінки знизу малих знаменників.

    автореферат (75,2 K)
  • Дослідження теорем метричного характеру про оцінки знизу малих знаменників, які виникли при побудові формальних розв'язків задач. Аналіз задач з інтегральними умовами для рівнянь із частинними похідними зі змінними коефіцієнтами гіперболічного типу.

    автореферат (257,1 K)
  • Розв’язання задач з параметрами на прикладі лінійних, квадратних та графічних рівнянь. Вивчення механічного та геометричного змісту похідних та їх застосування у основних елементарних, обернених, складених функціях та логарифмічному диференціюванні.

    лекция (445,3 K)
  • Визначення основних умов коректної локальної та глобальної розв'язності задач з рухомими (відомими та невідомими) межами для гіперболічних систем квазілінійних рівнянь першого порядку. Дослідження особливого випадку областей з рухомими межами на площині.

    автореферат (323,9 K)
  • Метод числового розв'язання нелінійних задач теорії комплексного квазіпотенціалу для нелінійно-шаруватих криволінійних областей. Розв’язання прямої задачі знаходження потенціалу поля, ідентифікації значень коефіцієнта провідності на границі області.

    статья (270,9 K)
  • Характеристика екстраполяції ізотропних випадкових полів з певних класів в центрі сфери за спостереженнями на сфері. Оцінювання невідомого середнього значення для однорідних та ізотропних випадкових полів з певних класів, що спостерігаються на кулі.

    автореферат (27,2 K)
  • Теорії замкнених операторів та співвідношення двоїстості за Фенхелем для опуклих функціоналів. Підхід до розв’язання задач гарантованого оцінювання класу лінійних алгебраїчних дескрипторних систем. Поняття мінімаксних оцінок та сутність фільтру Калмана.

    автореферат (49,3 K)
  • Приклади розв’язування типових завдань для учнів 6 класу. Розв’язок задач за допомогою пропорцій. Визначення прямо пропорційних и обернено пропорційних величині і основні їхні відмінності. Розв'язок обернено пропорційних величин складанням пропорції.

    задача (30,1 K)
  • Дослідження видів найбільш розповсюджених математичних рівнянь. Приклади розв’язувань завдань на рух. Засоби вирішення задач, що містять в умові невідомі числові величини. Вирішування прикладів за допомогою нерівностей та цілочислових невідомих.

    лекция (128,2 K)