Рассмотрение условий и конкретных типов задач, при которых знание собственных значений характеристического полинома при решении линейных дифференциальных уравнений не является обязательным. Периодическая переходная функция при периодическом воздействии.
- 2342. Некоторые особенности численной реализации нелинейных интегральных моделей динамических объектов
Характеристика различных видов нелинейных интегральных динамических моделей, и также подходов к построению численных алгоритмов их компьютерной реализации. Выбор или разработка необходимого, часто специального, численного алгоритма для методов квадратур.
Вопрос об изложении темы "Построение функций Ляпунова" раздела "Теория устойчивости" в курсах, посвященных динамике систем, дифференциальным уравнениям, для студентов математических и технических специальностей. Методика построения функций Ляпунова.
Исследование составления принципиальной схемы математической обработки социологических данных. Отдельные уязвимости математизации в социологии. Характеристика основных методов принятия решений. Особенность выбора типа распределения случайной величины.
Понятие комплексного числа. Алгебраическая форма записи комплексного числа. Рассмотрение тригонометрической и показательной формы. Основные действия над комплексными числами. Разложение многочлена на множители. Разложение правильных рациональных дробей.
Рассмотрение свойств особой (неподвижной) точки типа ротор в двумерных неавтономных диссипативных вещественных системах обыкновенных дифференциальных уравнений. Исследование механизма перехода к хаосу в многомерных системах дифференциальных уравнений.
Почти контактные метрические многообразия специального вида. Тензорное поле кручения внутренней связности. Структуры, возникающие на распределение нулевой кривизны сасакиевых многообразий. Трансверсальная составляющая тензора кривизны некоторой связности.
- 2348. Некоторые теоремы Штурма
Решение краевых задач уравнений математической физики и задачи о разыскивании собственных значений и собственных функций для обыкновенных дифференциальных уравнений. Задача Штурма-Лиувилля о нахождении отличных от нуля решений дифференциальных уравнений.
Разработка и анализ методики исследования неподвижных точек автономной системы дифференциальных уравнений для подтверждения гипотезы о существовании решения этой системы с хаотическими колебаниями. Определение параметров, управляющих ее поведением.
- 2350. Нелинейная регрессия
Ознакомление с математической постановкой задачи регрессии. Исследование и характеристика одномерной полиномиальной регрессии с произвольной степенью полинома и с произвольными координатами отсчетов. Рассмотрение особенностей синусоидальной регрессии.
Выявление нелинейности преобразований Лоренца для времени, изучение следствий этого факта. Тензорное исчисление в теории относительности. Некорректность определения скаляра в тензорном исчислении. Четырехвектор пространства-времени физической реальности.
- 2352. Нелинейные модели
Понятие нелинейных моделей. Расчет систем управления по нелинейным моделям. Логические, оптимизирующие и параметрические нелинейные законы регулирования. Примеры динамических нелинейностей в законе регулирования. Системы с самонастройкой структуры.
Розв’язність задачі Діріхле для еліптичного рівняння в області з малим кутом, для квазілінійного еліптичного недівергентного рівняння в області з конічною точкою; нерівності гострого кута для пар лінійних еліптичних операторів в області з кутовою точкою.
Дослідження коливання літального апарату з абсорбером поблизу збуреної поверхні. Математичне моделювання динаміки балки на пружній основі з прикріпленим демпфером. Розв'язання системи нелінійних диференціальних рівнянь, що моделює коливання балки.
Два підходи організації ітераційних процесів для розв’язання нелінійних задач при формуванні дискретних образів статико-геометричним методом. Приклади, які демонструють використання цих принципів. Проведення аналізу залежності похибки від числа ітерацій.
Розробка узагальненої математичної моделі, що описує процес неперервного культивування змішаної культури при різних взаємодіях. Аналіз якісних змін у динаміці систем, обумовлених варіаціями декількох параметрів, за допомогою методів теорії біфуркацій.
Побудова конструктивних умов існування та алгоритмів знаходження розв’язків нетерових крайових задач для слабконелінійних систем звичайних диференціальних рівнянь. Побудова трьохкрокової ітераційної процедури та отримання умов збіжності цієї процедури.
- 2358. Нелокальна крайова задача для диференціального рівняння з частинними похідними у комплексній області
Дослідження нелокальної крайової задачі для рівняння з частинними похідними з оператором узагальненого диференціювання, який діє на функції скалярної комплексної змінної. Доведення теореми єдиності та теореми існування розв'язку задачі у просторі.
Критерии единственности решений задач для дифференциального уравнения в частных производных. Изучение краевых задач на сопряжения с нелокальным граничным условием, связывающим значения искомого решения на противоположных сторонах прямоугольной области.
Определение понятия числового ряда. Нахождение предела его общего члена. Доказательство теоремы необходимого признака сходимости числового ряда. Достаточные признаки сходимости рядов с положительными членами. Исследование сходимости гармонического ряда.
Интегрирование иррациональных выражений и выражений, содержащих тригонометрические функции. Методы интегрирования простейших дробей. Первообразная, неопределенный интеграл и его свойства. Таблица основных формул интегрирования. Формула Ньютона–Лейбница.
- 2362. Неопределенный интеграл
Свойства неопределенного интеграла. Применение метода подстановки для различных типов функций. Разложение интегральной функции. Формула понижения степени для интеграла. Интегрирование иррациональных функций. Подстановки Эйлера. Дифференциальные биномы.
- 2363. Неопределённый интеграл
Особенности нахождения неопределённых интегралов различных типов. Типовой расчёт по теме "Интегральное исчисление функции одной переменной" с применением методов интегрирования. Решение примерного варианта уравнения с краткими методическими указаниями.
Анализ состояния проблем синтеза моделей динамических объектов управления, параметры и структура которых неизвестны. Пример очень простой модели прогноза состояния динамического объекта в виде "черного ящика", параметры которого недоступны для измерения.
Формы проявления взаимосвязей. Методы оценки тесноты связи: корреляционные (параметрические) и непараметрические. Оценка линейного коэффициента корреляции. Доверительный интервал для теоретического коэффициента корреляции. Ранговый коэффициент Спирмена.
Математическое описание треугольника паскаля как бесконечной таблицы биноминальных коэффициентов, имеющей треугольную форму. Принцип соответствия треугольника Хуэя в китайском средневековом манускрипте. Блоки макроуровня и примеру треугольников Паскаля.
Вивчення змісту проблеми апроксимації неперервних відображень на банахових просторах та межах Фреше в класі аналітичних відображень. Доведення просторової теореми Вінера. Застосування поліномів для побудови і дослідження функцій на гільбертовому кубі.
Умови збіжності матриць Гріна лінійних крайових задач для систем диференціальних рівнянь першого порядку по нормі простору Лебега. Аналіз неперервності за параметром розв’язків лінійних крайових задач для систем диференціальних рівнянь першого порядку.
Аналіз використання теореми Геделя про неповноту в ідентифікації структури сталі. Застосування принципу зовнішнього доповнення Біра для часткового усунення обмеженості твердження про можливу самоорганізацію системи неживої природи та різновиду металів.
Выбор оптимальных параметров для касательного и двухчастотного разложений для модельной задачи. Исследование неполных блочных разложений высоких порядков на основе новых представлений для рациональных аппроксимантов, допускающих матричные обобщения.