Основные принципы управления. Идентификация объектов управления, алгоритмы их оптимизации. Численные, градиентные, квазиньютоновские, комбинированные методы оптимизации. Аналитические методы исследования невыпуклых задач. Сущность проблемы нелокальности.
Составление обобщенной функции Лагранжа. Необходимые условия экстремума первого порядка. Анализ выполнения достаточных условий экстремума. Нахождение минимума функции методом Нелдера–Мида. Определение вершин многогранника сопряженных направлений.
- 2403. Методы оптимизации в ТКС
Методы поиска точек экстремума функции на отрезке: простого перебора, золотого сечения, деления отрезка. Сущность и содержание методов с использованием информации о производной функции: средней точки, касательной, секущих, кубической аппроксимации.
Понятие и сущность системы автоматизированного проектирования, описание, применение методов одномерного поиска и оптимизации. Характеристика одномерной оптимизации с использованием производных, её специфика. Квадратичная аппроксимация и седловая точка.
Нахождение двух наименьших положительных корней уравнения. Рассмотрение метода деления отрезка пополам. Описание программного алгоритма этого метода. Определение значения корней с необходимой точностью. Характеристика метода итераций, пример решения.
Методика проведения оптимизации заданного выражения. Нахождение числа, при котором функция принимает оптимальное значение. Аналитический способ нахождения локального минимума. Методы одномерного поиска. Одномерная оптимизация с использованием производных.
Построение функции принадлежности для определения важности дисциплины для будущей специальности с помощью применения метода парных сравнений. Использование участия специалистов в анализе и решении проблемы при применении метода экспертного опроса.
Постановка задачи аппроксимации и интерполяции функций. Общее понятие обобщенной степени и конечных разностей. Интерполяционные формулы Ньютона. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов для обработки результатов экспериментов.
Составление математической модели задачи. Построение линии уровня и вектора градиента. Решение задачи геометрическим методом и системы методом обратной матрицы. Построение области допустимых решений данной задачи, ограниченной несколькими прямыми.
- 2410. Методы прогнозирования
Прогнозирование с использованием скользящего среднего. Метод экспоненциального сглаживания. Предсказание структуры денежного потока на основе структуры текущих денежных потоков. Понятие прогнозирования, предсказания. Экстраполирование и интерполирование.
Основные положения теории прогнозирования и применение ее методов для решения прикладных задач. Оценки границ интервального прогноза, доверительная вероятность и параметр нормального закона распределения. Динамика спроса в течение циклов расхода запасов.
Определение наилучшей функции по методике наименьших квадратов. Порядок вычисления интерполяционного полинома Лагранжа, который проходит через все заданные точки. Принципы и особенности представления приближенной функции многочленом второй степени.
Определение понятия прогнозирования. Характеристика видов и методов прогнозирования. Анализ основных элементов временных рядов. Моделирование тенденции временного ряда путем построения аналитической функции. Пример решения задачи трендовым методом.
Методы начертательной геометрии как теоретическая база для решения задач технического черчения. Развитие пространственного воображения и навыков правильного логического мышления. Понятие о методах проецирования. Способы задания плоскости на чертеже.
Методы разработки алгоритмов. Характеристика особенностей "жадных" алгоритмов. Анализ задачи о выборе заявок. Изучение методов определения правильности алгоритма. Изучение принципов жадного выбора. Жадный алгоритм и динамическое программирование.
Формула для вычисления вектора частного решения неоднородной системы дифференциальных уравнений. Метод "переноса краевых условий" в произвольную точку интервала интегрирования. Программа на С++ расчета цилиндрической и сферической оболочки.
Исследование методов решения задач линейного программирования (ЗЛП) практическое применение симплекс-метода в решении задачи линейного программирования, его особенности и программная реализация, и понятие "двойственных задач линейного программирования".
Изучение особенностей графического и симплексного методов решения задач линейного программирования. Геометрическая интерпретация ограничений. Нахождение максимального значения целевой функции задачи. Определение и построение области допустимых решений.
Характеристика основных комбинаций многогранников с цилиндром, конусом и шаром. Главные правила при решении задач на комбинации фигур. Особенности факторов связанных с вписанными и описанными сферами. Формулы для расчета площади поверхности и объема.
Общие аксиомы конструктивной геометрии, методы решения элементарных геометрических задач на построение на плоскости. Методы геометрических преобразований: симметрия, вращение, гомотетия, инверсия. Построение отрезков, заданных простейшими формулами.
Понятие условного экстремума. Использование методов неопределенных множителей Лагранжа, исключения части переменных и штрафных санкций для исследования функции на условный экстремум. Алгоритм нахождения экстремума функции методом множителей Лагранжа.
- 2422. Методы решения игр
Решение игры с природой по критериям Гурвица, Лапласа, Сэвиджа и Вальда. Использование метода Брауна и симплекс-метода для определения оптимальной стратегии игрока и максимального значения выигрыша. Расчет цены игры, ее проверка на наличие седловой точки.
Примеры решения простейших иррациональных неравенств. Использование преобразований подкоренного выражения в иррациональных неравенствах. Применение в них свойства монотонности функции. Решение неравенств, содержащих несколько корней чётной степени.
Решение задачи Коши в случае переменных коэффициентов. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Метод "переноса краевых условий" в произвольную точку интервала интегрирования. Начало счета методом прогонки.
Составление математической модели природных явлений. История возникновения, основные понятия и свойства логарифмов. Стандартные и нестандартные способы решения логарифмических уравнений и неравенств. Метод потенцирования, таблицы антилогарифмов Непера.
Рассмотрение логических или нечисловых задач, которые составляют обширный класс нестандартных задач. Анализ разных способов решения логических задач. Особенности методов рассуждений, таблиц, графов, блок-схем, бильярда, метода с помощью кругов Эйлера.
Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.
Решение дифференциального уравнения для вертикальных колебаний под действием вынуждающей силы. Сравнение функции ode45 и метода Рунге-Кутты 4 порядка. Оценка точности результата решения данного уравнения методом Эйлера и методом Рунге-Кутты 4 порядка.
Уравнения, содержащие неизвестные в показателе степени. Использование метода приведения к одному основанию при решении показательных уравнений. Особенности решения уравнений методом оценки, графическим методом и методом введения новых переменных.
Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.