• Ознакомление с теорией относительности на примере сказки английского математика Льюиса Кэррола "Алиса в зазеркалье". Практические свойства выпуклого зеркала. Законы пространства и вычисление коэффициента сжатия в любом направлении, перпендикулярном оси.

    презентация (150,8 K)
  • Рассмотрение плана проведения семинарских занятий. Анализ алгебраических поверхностей и их классификация. Приведение уравнений поверхностей второго порядка к каноническому виду. Исследование асимптотических направлений, пересечений, касаний, особых точек.

    методичка (858,3 K)
  • Учение о подобии. Теорема подобия для случая подобия механических явлений. Экспериментальная проверка приближенного метода моделирования. Математическое и физическое подобие. Уравнения, описывающие явления природы. Движение математического маятника.

    контрольная работа (107,6 K)
  • Основные понятия теории поля. Фиксированная система координат в пространстве. Рассмотрение основных характеристик и классификации скалярного и векторного полей. Формулы Стокса и Остроградского-Гаусса. Векторный дифференциальный оператор Гамильтона.

    лекция (256,2 K)
  • Элементы математической теории скалярных и векторных полей. Характеристики скалярного поля. Потенциальное векторное поле, его свойства. Потенциальное несжимаемое поле и поле Лапласа (гармоническое). Теорема о разложимости произвольного векторного поля.

    реферат (148,6 K)
  • Геометрический смысл модуля числа - расстояния от начала отсчёта до точки, которой соответствует это число на координатной прямой. Бесконечно малая функция и ее свойства. Основные теоремы о пределах, их единственность, арифметические операции над ними.

    реферат (279,4 K)
  • Формально-математические модели принятия решений. Многокритериальная оптимизация. Принятие решений как процесс человеческой деятельности, направленный на наилучший вариант действий. Выбор стратегии поведения, товара. Тендеры и задача о назначениях.

    презентация (532,6 K)
  • Основные характеристики задач оптимизации, выбора и принятия решений. Аналитические методы построения множества Парето. Методы определения весовых коэффициентов. Обработка результатов экспертных оценок. Методы замены векторного критерия скалярным.

    учебное пособие (2,0 M)
  • Исследование сущности и содержания теории систем, системного подхода и анализа, которые составляют важнейшее достижение методологии ХХ ст. История возникновения системных идей, понятия теории систем, технология и главные этапы проведения анализа.

    учебное пособие (1,5 M)
  • Построение математических моделей, связывающих заданные условия работы систем массового обслуживания как предмет теории массового обслуживания. Знакомство с примерами систем массового обслуживания: ремонтные мастерские, билетные кассы, магазины.

    контрольная работа (242,5 K)
  • Взаимная корреляционная функция. Характеристика нормированной взаимной корреляционной функции. Математическое ожидание и дисперсия случайной величины. Понятие и сущность эргодичного процесса. Корреляционная функция стационарного случайного процесса.

    контрольная работа (922,5 K)
  • Рассмотрение агрегатной формы общего индекса, показателей вариации. Изменение динамики среднего значения изучаемого статистического процесса. Расчет структурных величин: моды и медианы. Определение индекса товарооборота, с помощью взаимосвязи индексов.

    контрольная работа (185,1 K)
  • Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.

    презентация (1,6 M)
  • Представление аналитической функции в заданном виде. Нахождение значения производной в заданной точке. Разложение функции в ряд Лорана в окрестности точки. Определение области сходимости ряда и вычисление интеграла по контуру при помощи вычетов.

    контрольная работа (144,2 K)
  • Точки на комплексной плоскости, элементарные функции комплексного переменного. Характеристика и отличительные черты однолистных и многозначных функций. Теорема Коши-Римана, понятие линейного отображения. Определение ряда Лорана, изолированные точки.

    лекция (407,2 K)
  • Отношение делимости в кольце целых чисел, их свойства. Алгоритм Евклида как метод нахождения НОД(a,b), основанный на 2х леммах. Взаимно простые числа. Наименьшее общее кратное. Основная теорема арифметики. Непозиционные и позиционные системы счисления.

    реферат (423,4 K)
  • Анализ развития экспертных оценок в СССР в послевоенные годы. Экспертные технологии, позволяющие выявить движущие силы развития в этой перспективной научно-практической области системной нечеткой интервальной математики и статистики нечисловых данных.

    статья (43,1 K)
  • Построение теории экстремумов функций многих переменных, изложенной в учебнике по дифференциальному исчислению О. Коши. Впервые в задаче на экстремум функции он применил критерий Сильвестра положительной (отрицательной) определенности квадратичных форм.

    статья (500,9 K)
  • Вивчення історії виникнення теорії геометричних перетворень. Наведення методики вивчення рухів, перетворень подібності, геометричних перетворень. Розгляд способів організації діяльності учнів на уроках з геометрії з використанням інформаційних технологій.

    реферат (498,5 K)
  • Економічна інтерпретація прямої та двоїстої задач лінійного програмування. Основні правила побудови двоїстих задач. Основні теореми двоїстості та їх економічний зміст. Приклади застосування для знаходження оптимальних планів прямої та двоїстої задач.

    лекция (258,8 K)
  • Набір експериментальних даних. Побудова варіаційного ряду, табличне, графічне, аналітичне представлення вибірки. Числові характеристики центральної тенденції та розсіювання. Текст програми (Object Pascal Delphi 4 з застосуванням технології ActiveX).

    контрольная работа (172,6 K)
  • Вирішення узагальненої інтерполяційної задачі для стільтьєсівських матриць-функцій. Доведення збігу множини канонічних і множини N-екстремальних рішень 1 та 2-го роду. Узагальнення класичного критерію Стільтьєса невизначеності проблеми моментів.

    автореферат (51,3 K)
  • Формули множення ймовірностей для залежних та незалежних випадкових подій. Локальна та інтегральна теореми Мавра-Лапласа. Формула Пуассона малоймовірних випадкових подій. Нерівності Чебишова та її значення. Теорема Бернулі. Біноміальний закон розподілу.

    шпаргалка (120,3 K)
  • Випадкові події та означення ймовірності. Основні формули додавання і множення ймовірностей. Незалежні повторні випробування, формула Бернуллі. Дискретні випадкові величини та їх числові характеристики. Статистична перевірка статистичних гіпотез.

    методичка (175,6 K)
  • Функції від одного випадкового аргументу. Композиція законів розподілу. Математичні моделі в теорії ймовірності. Ступінь точності випробування. Розрахунок ймовірності складніших подій. Виникнення теорії ймовірностей як науки, встановлення аксіоматики.

    курсовая работа (642,7 K)
  • Історія виникнення теорії ймовірностей у середині XVII ст. у зв'язку з завданнями розрахунку шансів виграшу гравців в азартних іграх. Міркування французького математика Паскаля. Розрахунок рівноможливих випадків. Теорія ймовірностей - розділ математики.

    реферат (26,1 K)
  • Зчислені множини та їх властивості. Застосування теореми Кантора-Бернштейна. Міра Лебега обмежених множин. Поняття півкільця, кільця, алгебри. Узагальнення поняття вимірності в R1. Властивості вимірних функцій, пов’язані з алгебраїчними операціями.

    курсовая работа (537,6 K)
  • Поняття про скалярні та векторні поля. Обчислення площ плоских фігур за допомогою криволінійного інтеграла другого роду. Властивості комплексних чисел і дії над ними. Розгляд теореми Гельмгольца і формули Остроградського-Гауса. Ізольовані особливі точки.

    учебное пособие (621,2 K)
  • Теорія типів гомотопій – це новаторський підхід, який об'єднує поняття з математики та інформатики (інформаційних технологій), пропонуючи нове розуміння обох галузей. В даній статті поглиблено досліджено ТТГ, висвітлюючи її фундаментальні принципи.

    статья (30,0 K)
  • Поняття про комплексні числа, їх зображення на площині. Арифметичні дії над комплексними числами, що виконуються за звичайними правилами дій над двочленами. Основні елементарні функції комплексної змінної та її диференціювання. Умови Коші-Рімана.

    лекция (382,9 K)