Методы решения уравнений в частных производных, а также анализ полученных результатов, используемые основные понятия и методы. Параметры разностных схем, их структура и назначение. Вариационный принцип Лагранжа и Гамильтона, их сравнительное описание.
Вывод уравнения колебания струны. Формулировка краевых задач, граничные и начальные условия. Волновое уравнение, которое описывает процессы распространения упругих, звуковых, световых, электромагнитных волн, а также другие колебательные явления.
Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.
Понятие дифференциального уравнения в частных производных. Особенности порядка старшего производного, его свойства. Уравнение математической физики с постоянными коэффициентами в случае двух переменных. Характеристика и расчет уравнения Лапласа и Фурье.
Переход от общих уравнений прямой к каноническим. Взаимное расположение прямых в пространстве, вычисление угла между ними. Порядок решения системы уравнений по формулам Крамера. Определение направляющего вектора. Проверка условия коллинеарности.
Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.
Актуальность постановки задачи использования многоствольных артиллерийских пушек для заглубления строительных элементов в грунт. Уравнения энергетического баланса при выстреле из многоствольных пушек с различными условиями заряжания каждого ствола.
Составление уравнений связи, измеренных длин функционально связанных с параметрами обратной геодезической задачи. Определение веса измеренных величин и значений сторон, вычисленных по приближенным координатам. Составление каталога уравненных координат.
Схема свободного полигонометрического хода с измеренными горизонтальными углами и тремя гиросторонами, его строгое уравнивание коррелятным способом. Вычисление дирекционных углов сторон полигона, определение их средней квадратической погрешности.
Використання методу усереднення для вивчення розв'язності крайових задач для деяких класів нелінійних систем звичайних диференціальних рівнянь з повільними та швидкими рухами. Теорія нелінійних коливань. Математична теорія багаточастотних систем.
Побудова асимптотичних розв'язків рівнянь керованого руху. Математичне дослідження складних систем. Метод розв'язування задачі оптимального керування з термінальним функціоналом на траєкторіях із запізненням. Оцінка властивостей множин досяжності.
- 4242. Усечённая пирамида
Изучение многогранника с n-угольными гранями в параллельных плоскостях и четырёхугольниках. Анализ построения правильной усеченной пирамиды. Расчет площади боковых поверхностей многоугольника, по теореме Пифагора об основаниях диагонального сечения.
Теорема гомотопической инвариантности для некоторых когомологий полилогарифмических комплексов. Использование результатов для построения интересных классов гиперболических многогранников по данным алгебраической геометрии. Мотивные когомологии поля.
Асимптотические представления некоторых типов решений одного класса нелинейных неавтономных дифференциальных уравнений второго порядка и достаточные условия существования таких решений. Медленно меняющаяся функция. Применение правила Лопиталя.
Равенства, определяющие операторов вольтерровского типа. Исследование вопроса о существовании и количестве неподвижных точек операторов вольтерровского типа на примере случая, когда параметры управляющие эволюцией, являются периодическими функциями.
Решение некоторых типов линейных интегро-дифференциальных уравнений с аналитическими функциями с помощью метода степенных рядов. Условия для алгоритмизации задач. Линейные интегро-дифференциальные уравнения с пропорциональным запаздыванием аргумента.
Методика выполнения построчного ортонормирования матричного уравнения краевых условий на левом участке. Характеристика специфических особенностей осуществления замены метода численного интегрирования Рунге-Кутта в алгоритме прогонки С.К. Годунова.
- 4248. Устные упражнения как одно из средств формирования математической культуры учащихся V-IX классов
Анализ психолого-педагогической и научно-методической литературы и определение современного состояния методики организации устных упражнений. Активизация мыслительной деятельности учащихся на уроках математики посредством устных и письменных упражнений.
Алгоритмы идентификации для обеспечения качества управления системой. Линейная дискретная динамическая система с использованием мерного вектора шума объекта с нулевым математическим ожиданием и ковариационной матрицей. Проявление численной неустойчивости.
Решение проблемы о структуре окрестности притягивающих, слабо притягивающих и неасимптотически устойчивых инвариантных множеств. Классификация компактных и замкнутых инвариантных множеств. Метод знакопостоянных функций Ляпунова для динамических систем.
Линеаризация как основной прием изучения устойчивости особой точки системы обыкновенных дифференциальных уравнений. Устойчивая, нейтральная и неустойчивая линеаризация. Способ отыскания инвариантных лучей системы. Построение линейной функции Ляпунова.
Условия асимптотической устойчивости системы. Переходные процессы в неустойчивой системе. Необходимые условия устойчивости системы. Критерий устойчивости линейных систем. Расчет параметров корректирующего устройства. Метод параметрического синтеза.
Система с постоянной положительной матрицей. Линейная функция Ляпунова. Прикладные задачи с положительными переменными. Условие устойчивости общих линейных систем. Траектории агентов в притягивающем параллелепипеде. Функция Ляпунова для уравнения.
Понятие о теории устойчивости Ляпунова. Устойчивость линейной системы дифференциальных уравнений. Общие теоремы об устойчивости линейных систем дифференциальных уравнений. Применение теории устойчивости, методы решения задач об устойчивости движения.
Свойства систем дифференциальных уравнений. Исследование предельного множества траекторий. Траектории линейных систем на плоскости. Линейные однородные системы с периодическими коэффициентам. Устойчивость решений систем дифференциальных уравнений.
Исследование асимптотической устойчивости и устойчивости в среднем квадратичном линейных и нелинейных систем со случайной структурой и случайным условием скачка фазового вектора. Анализ задач управления и стабилизации стохастических систем со скачками.
Описание модификации метода главных компонент, использующей веса наблюдений, получаемых с использованием неравенства Чебышева. Анализ и оценка устойчивости этого способа по отношению к стандартному методу главных компонент при различной доле шума.
Исследование процесса применения персональных компьютеров к проблеме распределения простых чисел. Анализ метода снижения нормы отклонений наиболее популярных функций распределения простых чисел от реальных значений. Рассмотрение испытанных аппроксимаций.
Аэродинамика, баллистика и управление полетом летательных аппаратов. Линеаризация численных значений углов крыла по их полуразмаху. Совершенствование форм несущих поверхностей среднемагистрального самолёта. Расчёт площади агрегатов хвостового оперения.
Суть и содержание, закономерности и история формирования учения Пифагора о числе как о первоначале мира. Исследование концепции великого ученого о вещественности числа. Особенности мировоззрение пифагорейцев при трансформации на современный язык.