• Обґрунтування актуальності створення математичної моделі гідроприводу поршневого насоса, що є елементом гідравлічної системи. Математична модель як сукупність математичних рівнянь опису двох фаз робочого циклу і відповідних початкових та граничних умов.

    статья (840,2 K)
  • Исследование теории графов в 30-е годы ХХ в. Двудольные графы и возможность их применения для наглядного представления паросочетаний. Изучение условия Холла. Трансверсали семейств множеств. Определение степени вершины. Паросочетания специального вида.

    лекция (127,2 K)
  • Обзор наиболее важных результатов в теории обобщенных паросочетаний при предпочтениях участников друг относительно друга, заданных линейными порядками. Исследование возможности построения эффективного устойчивого паросочетания в модели "один ко многим".

    дипломная работа (897,5 K)
  • "Единая теория поля" — первая подлинно геометризованная концепция, толкующая электромагнитное поле как геометрический феномен. Четыре группы аксиом Вейля и доказательства их справедливости с построением математических моделей систем.

    реферат (98,1 K)
  • Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову. Их геометрическая интерпретация. Устойчивость решения автономной системы и линейных дифференциальных уравнений с постоянными коэффициентами. Простейшие типы точек покоя.

    контрольная работа (20,2 K)
  • Управление математическими моделями. Связь входа и выхода. Строение моделей, линейность, нелинейность, дифференциальные уравнения. Передаточная функция, пространство состояний. Апериодическое, колебательное, интегрирующее звено. Анализ систем управления.

    книга (1,1 M)
  • Раздел дискретной математики, изучающий абстрактные автоматы: вычислительные машины, представленные в виде математических моделей и задачи, которые они могут решать. Работа распознавателя. Функциональная схема абстрактного автомата, порядок работы с ним.

    реферат (267,8 K)
  • Изучение различных алгебраических систем. Теория конечных групп симметрий. Группы матриц, перестановок. Отношение порядка в упорядоченном поле. Изучение в математике операций над элементами множества произвольной природы, сложение и умножение чисел.

    контрольная работа (98,1 K)
  • История теории алгоритмов. Определение, свойства и типы алгоритмов. Действия с обыкновенными дробями. Алгоритмы в изучении различных школьных предметов. Разложение на простые множители. Арифметические действия с положительными и отрицательными числами.

    реферат (62,7 K)
  • Теоретические аспекты понятия "вероятностные пространства". Функции и типы распределения, их числовые характеристики и особенности преобразования случайных величин. Случайные процессы с непрерывным временем: общие определения и процесс Пуассона.

    курс лекций (891,4 K)
  • Средняя арифметическая взвешенная, количество величин с одинаковым значением. Таблица Лапласа и линейная связь. Вероятность достоверного события и дисперсия случайной величины. Оценка математического ожидания. Дискретная и непрерывная случайная величина.

    контрольная работа (185,5 K)
  • Пространство элементарных событий и операции над случайными событиями. Основные элементы комбинаторики. Характеристика непрерывных случайных величин. Применение формулы полной вероятности и формулы Байеса. Закон больших чисел. Плотность вероятности.

    учебное пособие (879,2 K)
  • Формула полной вероятности. Математическое ожидание, среднеквадратическое отклонение и дисперсия. Дискретная случайная величина. Интегральная функция распределения F(x). Квантили Х для нормального стандартного распределения по указанным вероятностям.

    контрольная работа (584,8 K)
  • Формулы и теоремы комбинаторики. Предмет теории вероятностей и статистическая устойчивость. Виды операций над событиями. Независимые испытания с несколькими исходами. Случайные величины и их распределение. Изучение числовых характеристик зависимости.

    учебное пособие (585,1 K)
  • Изучение основных формул комбинаторики. Анализ примеров абсолютно непрерывных распределений. Характеристика теоремы Пуассона для схемы Бернулли. Рассмотрение особенностей использования формулы свёртки. Изучение основных свойств коэффициента корреляции.

    учебное пособие (868,7 K)
  • Вероятность качественного изготовления изделий. Распределение дискретной случайной величины. Математическое ожидание и среднее квадратичное отклонение. Рассмотрение закона распределения вероятности. Уравнение линейной среднеквадратической регрессии.

    контрольная работа (112,6 K)
  • Задача на нахождение вероятности искомого события. Вероятности попадания в цель при стрельбе из трех орудий. Формула Пуассона. Задача на определение вероятности того, что наудачу взятое изделие произведено на фабрике, если оно оказалось нестандартным.

    контрольная работа (59,4 K)
  • Понятие и примеры случайного события. Правила сложения и умножения в комбинаторике. Формулы вычисления вероятностей. Локальная и интегральная теоремы Муавра–Лапласа. Классы функций распределения. Непрерывные случайные величины. Закон больших чисел.

    краткое изложение (1,4 M)
  • Рассмотрение элементов теории вероятностей и пространства элементарных частиц. Изучение закономерностей проведения массовых однородных испытаний. Рассмотрение условий классической схемы испытаний. Определение вероятности произведения двух событий.

    контрольная работа (64,4 K)
  • Рассмотрение закона распределения случайной величины. Расчет математического ожидания, дисперсии и среднеквадратического отклонения числа. Вероятность попадания случайной величины в интервал. График плотности распределения математических функций.

    контрольная работа (108,2 K)
  • Формирование треугольника из трех произвольных отрезков. Расчет вероятности события исходя из оценки количества благоприятных случаев. Вычисление по формулам математического ожидания, дисперсии и среднеквадратического отклонения случайной величины.

    контрольная работа (60,4 K)
  • Исторические сведения о возникновении и развитии теории вероятностей. Определение случайного события и условные вероятности. Определение случайной величины и ее числовые характеристики, понятие математического ожидания. Примеры дискретных распределений.

    курс лекций (237,1 K)
  • Случайные события, теоремы сложения и умножения вероятностей. Виды случайных величин. Математическое ожидание и дисперсия дискретной случайной величины. Закон больших чисел. Плотность распределения вероятностей. Нормальное и показательное распределение.

    курс лекций (1,1 M)
  • Обзор основных комбинаторных объектов. Ключевые понятия и элементы теории вероятностей. Теоремы сложения и умножения вероятностей. Классическая формула вероятности. Формула полной вероятности Байеса. Асимптотические формулы, теорема Муавра-Лапласа.

    презентация (860,5 K)
  • Анализ основных понятий теории вероятностей. Прикладное применение знания теории вероятностей, обзор ее основные видов. Понятие случайного события, логика мышления по закону вероятности. Определение вероятности какого-либо события из повседневной жизни.

    доклад (13,1 K)
  • Понятие пространства элементарных событий. Сведения из теории конечных множеств и комбинаторики. Декартово произведение как одна из важнейших конструкций математики. Изучение взаимосвязей логики, интуиции и приложений. Регламент деятельности учителя.

    книга (189,2 K)
  • Проверка статистической гипотезы о виде неизвестного распределения. Оценка математического ожидания случайной величины. Определение корреляционной зависимости между рядами наблюдений. График эмпирической функции и функции нормального распределения.

    контрольная работа (813,7 K)
  • Определение вероятности того, что среди шести взятых одновременно деталей три окажутся первого вида. Проведение расчета вероятного числа студентов, родившихся 1 мая. Особенности применения полиноминальной схемы. Анализ закона распределения числа.

    задача (787,2 K)
  • Основные закономерности теории вероятностей. Элементы комбинаторики. Система случайных величин. Вероятностный смысл плотности распределения. Законы больших чисел. Линейная регрессия. Статистическая проверка гипотез. Понятие о множественной корреляции.

    учебное пособие (805,3 K)
  • Поиск выборочных ковариации и коэффициента корреляции. Доверительный интервал для математического ожидания величины. Оценка параметров модели методом наименьших квадратов. Тестирование близости эмпирического распределения остатков моделей к нормальному.

    контрольная работа (948,7 K)