Достатні умови існування розв’язку узагальненої нормальної крайової задачі для квазілінійної параболічної системи з лінійною головною частиною. Використання теореми Шаудера та принципу стисних відображень. Оцінка значень спряжених операторів Ґріна.
Математична модель оптимального керування літальним апаратом як нестаціонарним рухомим об’єктом. Визначення шляху найменшого часу польоту літального апарату. Побудова фазових траєкторій. Визначення зовнішніх силових факторів, які діють на рухомий об’єкт.
Роботи Аполлонія Пергського про конічні перетини. Висновок рівняння кривої для перетину прямокутного конуса обертання, параболи, еліпса та гіперболи. Інваріантність конічних перерізів. Рівняння кривих другого порядку. Цікаві криві та їх властивості.
Описання будови максимальних лівих ідеалів в ультрадобутку зліченної сім'ї нетерових V-областей шляхом знаходження загальної формули, що задає будову максимального лівого ідеала в ультрадобутку нетерових областей. Обчислення спектру ультрадобутку.
Изучение сущности, основания и коэффициента степени. Особенность нахождения знака выражения. Важнейшая характеристика правил умножения и деления разряда для произвольных натуральных чисел. Существенный анализ определения фазиса с нулевым показателем.
Система линейных уравнений. Минор и алгебраическое дополнение элемента определителя. Действия с матрицами, выполнение сложения и вычитания. Разложение определителя по столбцу. Транспонирование: замена строк на столбцы с сохранением порядка следования.
Розвиток теорії систем лінійних та нелінійних випадкових рівнянь над полем GF(3). Умови збіжності до нуля ймовірності існування розв'язків системи випадкових рівнянь з n невідомими над полем GF(3) в заданій множині векторів при умові, що n зростає.
Звичайні диференціальні рівняння зі змінними коефіцієнтами, які зводяться до рівнянь зі сталими коефіцієнтами за допомогою заміни змінної. Коливання систем зі змінними параметрами. Інтегрування в квадратурах. Точні рішення для класу лінійних рівнянь.
Поняття слабкої коерцітивності системи мінімальних диференціальних операторів в ізотропному (анізотропному) просторах Соболєва. Дослідження нових конкретних видів мультиплікаторів. Умови еквівалентності слабкої коерцітивності системи її еліптичності.
Розгляд моделі лінійної регресії з вільним членом. Отримання необхідних та достатніх умов співпадання оцінки метода найменших квадратів та оцінки ортогональної регресії невідомих параметрів. Доказ теореми для вимірювань незалежних змінних з похибкою.
Характеристика сущности и свойств матрицы. Анализ специфики ортогональных и унитарных матриц. Изучение детерминант матриц и их свойств. Примеры нахождения определителей N-го порядка. Примеры решения задач на определение видов и детерминант матриц.
Дослiдження зв'язку мiж незвiдними ортоскалярними наборами пiдпросторiв гiльбертового простору та нерозкладними наборами пiдпросторiв лiнiйного простору. Розгляд систем підпросторів лінійного простору, що відповідають зображенням примітивних ЧВМ.
Задачи упаковки и раскроя как предмет исследования вычислительной геометрии, а методы их решения – новое направление теории исследования операций. Разработка эффективных алгоритмов, основанных на применении методов локальной и глобальной оптимизации.
Понятия предела функции, замыкания множества и компактности в метрическом пространстве. Теория фильтров при изучении сходимости в топологических пространствах. Рефлексивное и транзитивное отношение предпорядка. Симметричный и антисимметричный предпорядок.
Изучение устойчивости и качества переходных процессов в замкнутой системе. Особенности схемы построения адаптивной системы управления без прогнозирующего устройства. Рассмотрение аспектов решения дифференциального уравнения с запаздывающим аргументом.
Предложен алгоритм синтеза законов управления ограниченно неопределенными нелинейными объектами n-го порядка с математической моделью в нормальной форме и произвольным относительным порядком. Комбинированный принцип управления по производной n-переменной.
Использование приема умственной деятельности. Подведение под понятия в обучении студентов 1 курса начертательной геометрии. Осуществление формирования приема подведения под понятие у студентов на примере усвоения прямых параллельных плоскостям проекций.
Исследование проблемы и критериев выбора эффективных методов принятия управленческих решений местными органами власти. Необходимость совершенствования системы экспертных методов, используемых в процессе разработки и реализации муниципальных решений.
Параллельный перенос системы координат. Общее уравнение кривой второго порядка. График квадратного трехчлена. Вычисление линейного преобразования, заданного матрицей. Установление связи между декартовыми и полярными координатами точки, примеры расчета.
- 4220. Уравнение касательной
Расчет функций по правилам дифференцирования. Определение математического содержания касательной прямой. Рассмотрение примера предельного положения и углового коэффициента секущей линии. Формульное представление о тангенсе угла и наклоне касательной.
Уравнение Пелля как одно из наиболее изученных диофантовых уравнений. Использование алгебраических чисел и диофантовых приближений для решения уравнений. Нелинейные рекуррентные формулы для решений уравнения Пелля. Рекуррентная цепочка равенств.
Сущность уравнения прямой в пространстве как результат пересечения двух плоскостей. Рассмотрение нормального вектора плоскости и уравнения координатных плоскостей. Составление канонического уравнения прямой. Векторное параметрическое уравнение прямой.
Линия пересечения двух плоскостей. Уравнение прямой, проходящей через заданную точку параллельно данному вектору. Определение угла из скалярного произведения векторов. Изучение условия коллинеарности. Признак перпендикулярности и параллельности прямых.
Совокупность всех прямых, проходящих через некоторую точку плоскости. Уравнение прямой проходящей через две фиксированные точки. Текущая точка с переменными координатами. Взаимное расположение на плоскости. Критерий перпендикулярности прямых в уравнении.
- 4225. Уравнение регрессии
Исходные данные для поиска уравнения регрессии, учет свободного члена. Расчет коэффициентов регрессии и корреляции. Интервальная оценка для коэффициента корреляции (доверительный интервал). Заметное отклонение некоторых значений от линии регрессии.
- 4226. Уравнение треугольника
Расчет длины стороны треугольника и его внутреннего угла с точностью до градуса. Определение длины высоты, опущенной из вершины; точки пересечения высот; уравнения медианы, проведенной через вершину. Система линейных неравенств, определяющих треугольник.
Сущность метода определителей Фредгольма. Пример нахождения резольвенты ядра с помощью рекуррентных соотношений. Алгоритм решения интегрального уравнения методом последовательных приближений. Исследование особенностей интегральных уравнений Фредгольма.
- 4228. Уравнения Бернулли
Геометрическая интерпретация уравнения Бернулли. Уравнение для потока реальной (вязкой) жидкости. Основы гидродинамического подобия. Формула Дарси-Вейсбаха, внезапное расширение трубопровода. Ламинарное течение и профиль скорости в поперечном сечении.
Вычисление пределов функций. Правила вычисления производных. Нахождение наибольших и наименьших значений функции на отрезке. Запись уравнения касательной и нормали в общем виде. Область определения функции. Пересечение с осями координат, нули функции.
Дифференциальное уравнение как соотношение между функциями и их производными в основе математического моделирования. Особенности уравнения в полных дифференциалах. Условие полного дифференциала (необходимый признак уравнения в полных дифференциалах).