История возникновения систем счисления как символического метода записи чисел и представления чисел с помощью письменных знаков. Виды систем счисления: позиционные, смешанные, непозиционные. Отражение алгебраической и арифметической структуры чисел.
- 4352. Системы счисления и ЭВМ
Основание теории порядковых чисел на системе аксиом Пеано. Возможности системы счисления по реализации функции следования. Повышение эффективности счета в позиционных системах счисления. Особенности разработки фибоначчиевых систем счисления А. Стаховым.
- 4353. Системы уравнений
Рассмотрение системы уравнений, описывающих перераспределение ресурса. Управляемость и наблюдаемость линейных систем. Основные расчеты с математическими матрицами. Применение теоремы Виета для вычисления дискриминанта простого квадратного уравнения.
Нахождение определителя матрицы. Решение систем матричным способом. Решение алгебраических дополнений. Решение системы уравнений методом Гаусса. Исследование совместности систем по теореме Кронекера-Капелли, определение их ранга, нахождение решения.
Порядковая логика – математический аппарат, широко применяемый при решении многих задач обработки, преобразования непрерывной информации. Рекуррентные соотношения для математической модели систолического алгоритма реализации функций порядковой логики.
Задачи о неподвижной точке. Ускорение сходимости последовательных приближений. Алгоритм решения по методу Эйткена. Разработка программного проекта, реализация в С++. Отыскание корня нелинейного скалярного уравнения, отображение в одномерном пространстве.
Скалярное произведение векторов как число, равное сумме произведений соответствующих компонент этих векторов. Скалярное произведение товаров как их общая стоимость. Свойства скалярного произведения. Условие ортогональности. Неравенство Коши-Буняковского.
Анализ свойств операции в конечномерном векторном пространстве, определяющейся как скаляр произведений перемножаемых векторов, не зависящих от системы координат. Ознакомление с метрическими формулами проекций векторов на оси. Декартовые координаты.
Понятие геометрического места точек как поверхностного уровня скалярного поля. Порядок определения скорости изменения поля по направлениям координатных осей. Сущность градиента функции, особенности расчета. Теорема об ортогональности вектора градиента.
Конструктивний опис скінченних ненільпотентних біпримарних дисперсивних груп з яких довільна pd-підгрупа Шмідта надрозв’язна, з нормальною метациклічною силовською p-підгрупою непримарного індексу, а також недисперсивні розв’язні досліджувані групи.
Запис раціональних чисел у вигляді скінченних ланцюгових дробів. Розв’язування задач із неперервними схемами в електротехніці, автоматиці і обчислювальній техніці. Конгруенція першого степеня. Правила арифметичних дій. Засоби аналізу теорії ймовірностей.
Вивчення сагайдаків різного типу відображень. Дослідження деяких класів напівдосконалих кілець. Розгляд слабосиметричних скінченновимірних алгебр та опис напівдистрибутивних та напівпримарних кілець скінченного типу, квадрат радикалу яких дорівнює нулю.
Встановлення кількості сагайдаків часткових та однозначних відображень, їх зв’язок з досконалими праворядними кільцями скінченного типу. Дослідження алгебраїчно замкнених полем та характеристика квазіфробеніусового симетричного кільця у теорії графів.
Аналіз повної інтегрованості інверсних нелінійних динамічних систем на функціональних многовидах. Побудова та симплектичний аналіз скінченновимірних редукцій на локальні інваріантні підмноговиди бігамільтонових динамічних систем, аналіз їх інтегрованості.
Методика розв'язування задач з логічним навантаженням, їх значення в навчальному процесі та в розвитку мислення. Приклади нестандартних задач із логічною складовою для школярів молодших класів та аналіз проблем, які виникають при розв’язанні цих завдань.
Рассмотрение существующих систем искусственного интеллекта. Соотношение содержания понятий "данные", "информация", "знания" в АСК-анализе. Суть математической модели в АСК-анализе и ее частные критерии. Аналитические формы частных критериев знаний.
Схема знаходження коефіцієнтних умов існування розв’язків слабозбурених лінійних крайових задач для систем з імпульсною дією в фіксовані моменти часу. Метод Вішіка-Люстерніка, ефективні коефіцієнтні умови розв’язків крайової задачі у вигляді рядів Лорана.
Развитие системы счисления: словесный счет и описательные выражения совокупности нескольких единиц. Нумерация и счет на Руси: характерные особенности, символы счета и славянская кириллическая нумерация. Первый русский памятник математического содержания.
Методология формирования и развития вычислительных навыков сложения и вычитания в начальной школе. Принципы решения задач с опорой на числовое равенство. Составление деформированных числовых выражений. Разработка урока математики для первоклассников.
Сложение (вычитание) обыкновенных дробей, чтение и запись десятичного числа. Сравнение десятичных чисел и дробей с одинаковыми знаменателями. Разработка и описание математических заданий для самостоятельной работы учащихся на закрепление данной темы.
Особенности записи обыкновенных дробей в древнем Египте. Сложение и вычитание обыкновенных дробей с разными знаменателями. Приведение дробей к одинаковому знаменателю, используя основное свойство дроби. Изучение правил сложения и вычитания дробей.
Анализ методической и психолого-педагогической литературы. Роль устных вычислений в математике, основные виды упражнений. Нахождение значений математических выражений. Формы восприятия устного счета. Формирование вычислительных навыков и приёмом.
Аппаратная реализация устройств управления и их значение в информационных системах реального времени. Граф переходов автомата с выбором логического условия. Структурная модель автомата с операционным устройством, особенности взаимосвязи элементов.
Описание бесконечно ориентированного графа. Решение задач о количестве путей на граф-решетке. Решение задач о случайных блужданиях по вершинам графа, без ограничений на достижимость, а также со смешанным и магнитным ограничениями на достижимость.
- 4375. Случайные величины
Случайные величины и их классификация, числовые характеристики: математическое ожидание, дисперсия. Статистические гипотезы и способы их проверки: сравнение двух генеральных совокупностей, двух биномиальных распределений, критерий согласия Пирсона.
- 4376. Случайные величины
Разработка и рассмотрение закона распределения дискретной случайной величины. Определение математического ожидания, дисперсии и среднеквадратического отклонения случайной величины. Исследование и характеристика процесса построения графика функций.
- 4377. Случайные величины
Вычисление наивероятнейшей частоты события. Функция распределения случайной величины, определение её математического ожидания, дисперсии и моды. Вероятность наступления противоположного события. Функция распределения непрерывной случайной величины.
- 4378. Случайные величины
Математическое ожидание случайной величины. Плотность распределения вероятностей дискретной случайной величины. Функция распределения вероятностей. Дисперсия случайной величины. Кумулянты и характеристическая функция. Сингулярные случайные величины.
- 4379. Случайные величины
Случайная величина – величина, которая в результате испытания может принять то или иное возможное значение, неизвестное заранее, но обязательно одно. Дискретные, непрерывные и дискретно-непрерывные (смешанные) данные. Функция распределения вероятностей.
Анализ свойств функции распределения случайных величин в зависимости от их вида. Использование непрерывной и дискретной величин в инструментарии таможенной статистики. Показатели рассеяния возможных значений. Свойства математического ожидания и дисперсии.