Знакомство с законом распределения дискретной случайной величины. Общая характеристика таблицы значений эмпирической плотности относительных частот и эмпирической функции распределения. Рассмотрение способов вычисления выборочной средней выборки.
Закон распределения случайной величины. Рассмотрение геометрической интерпретации оси абсцисс. Понятие момента в механике, описание распределения масс. Исследование функции распределения вероятностей. Начальный момент прерывной случайной величины.
Случайные величины, сконструированные на основе нормального распределения, которые наиболее часто встречаются в математической статистике. Распределение случайных величин в статистических таблицах. Функция распределения двумерной случайной величины.
Понятия о случайных величинах и функциях распределения. Теоретические распределения вероятностей: биномиальное, пуассоновское и нормальное. Числовые характеристики случайных величин, их определение и вычисление - математическое ожидание и дисперсия.
Понятие и виды случайных величин, их числовые характеристики. Свойства дисперсии и вычисление числовых характеристик стандартных распределений. Функции от случайных величин, условные законы распределения. Потоки событий и теории массового обслуживания.
Случайные величины, их классификация, параметры, оценка. Представление различных видов распределений в электронных таблицах. Построение доверительных интервалов. Проверка соответствия экспериментального и теоретического распределений, критерий хи-квадрат.
- 4387. Случайные процессы
Определение понятий "случайная функция", "случайный процесс", "случайное поле". Функция распределения вероятностей случайного процесса. Расчет плотности распределения вероятностей случайного процесса. Характеристика моментных функций случайного процесса.
Решение методом Рунге-Кутты четвертого порядка точности дифференциального уравнения. Характерситика функции распределения и плотности вероятности стандартной величины. Фрагмент сгенерированной стандартной величины. Особенности Винеровского процесса.
- 4389. Случайные события
Соотношения между случайными событиями. Аксиоматическое и классическое определение вероятности, основные элементы комбинаторики. Теоремы умножения и сложения, вероятность суммы совместных событий. Основы формулы Бейеса, схема испытаний Бернулли.
- 4390. Случайные события
Сущность события как элементарного множества пространства элементарных исходов. Характеристика основных видов: достоверный, невозможный. Классическое определение вероятности и понятие "классической схемы". Применение формулы Байеса и схема Бернулли.
- 4391. Случайные события
Закономерности случайных явлений. Методы количественной оценки влияния случайных факторов на различные явления. Операции над событиями и их свойства. Дискретные и непрерывные случайные величины. Ряд распределения вероятности дискретной случайной величины.
- 4392. Случайные события
Вероятность наступления события в каждом из независимых испытаний. Определение математического ожидания, дисперсии, среднего квадратического отклонения дискретной случайной величины по закону её распределения. Вероятность абсолютной величины отклонения.
Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).
Начально-краевая задача для одного квазилинейного параболического уравнения с запоминающим оператором в ограниченной области с достаточно гладкой границей. Доказательство теоремы о существовании решений рассматриваемой задачи с запоминающим оператором.
Изучение единственного решения для смешанных краевых задач с заданными начальными условиями. Ознакомление с обозначениями сеточной функции по переменной. Анализ геометрического места узлов функции в разностном уравнении с фиксированными алгоритмами.
Исследование смешанной задачи для вырождающегося уравнения гиперболического типа с интегральным условием. Способы доказывания теоремы о существовании единственного обобщенного решения. Отличительные черты задач с нелокальными интегральными условиями.
Изучение геометрического смысла смешанного произведения нескольких некомпланарных векторов, лежащих в основании параллелепипеда. Доказательство равенства скалярного произведения, не зависящего от порядка множителей. Обзор свойств линейности равенства.
Определение и геометрический смысл смешанного произведения векторов. Формулирование необходимого и достаточного условия их компланарности. Рассмотрение уравнений линии на плоскости и прямой с угловым коэффициентом, векторного и канонического уравнений.
Особенность векторного произведения коллинеарных векторов. Характеристика создания градиентов в координатах. Анализ результата раскрытия определителя. Геометрические и алгебраические свойства смешанного творения. Суть циклической перестановки множителей.
Рассматривается модель контента выбора, которая позволяет учесть взаимосвязи между элементами выбора, и на формальном языке представить информацию, значимую с точки зрения влияния ситуации выбора на конечный результат. Исследование механизма выбора.
Уравнения, описывающие акустические колебания. Условия антисимметрии собственных функций относительно пластины. Дискретизация задачи и численные исследования. Метод прямого принудительного учета конечности энергии, а также разложения определителя.
- 4402. Совершенные числа
Характеристика совершенных чисел как натуральных чисел, равных сумме всех своих собственных делителей (то есть всех положительных делителей, отличных от самих чисел). Изучение основных свойств и операций с совершенными числами, анализ их истории.
Определение ранга расширенной матрицы системы. Решение системы по формулам Крамера. Средства векторной алгебры. Разложение вектора в базисе по векторам. Уравнение прямой, проходящей через две точки. Определение знаков неравенств. Точки разрыва функции.
Модель изменения вектора состояния задана линейным дифференциальным уравнением. Исследование стохастической задачи оптимизации, для решения которой применимы совместные стандартные детерминированные методы. Ковариационная матрица шума наблюдений.
Рассмотрение происхождения цифр с древних времен. Традиционное название набора из десяти знаков, самая важная цифра нашей счетной системы. Исследование двойки как символа любви, непостоянства, равновесия. Самое счастливое из всех чисел по мнению Пифагора.
Изучение уравнений с параметрами в современной математике и общих методов их решения. Анализ государственного стандарта среднего общего образования и школьных программ по алгебре. Проведение факультативных занятий в условиях предпрофильной подготовки.
Характеристика квазилинейных уравнений второго порядка. Разработка программы по исследованию уравнений. Составление функции, с помощью которой можно будет определить наличие предельного цикла в уравнении, периода одного полного цикла. Тестирование ПО.
- 4408. Создание программного обеспечения для решения кубических уравнений с использованием формулы Кардано
Изучение методов решения кубических уравнений, формула Кардано. Подробный алгоритм решения уравнений третьей степени и его реализация в объектно-ориентированной среде Delphi. Модуль комплексных чисел. Определение значения аргумента кубического корня.
Математика - составная часть человеческой культуры, которая является средством познания окружающего мира, базой научно-технического прогресса и компонентом развития личности. Методика составления задач краеведческого содержания о Кемеровской области.
- 4410. Создание сплайнов
Определение сплайнов и их пространство. Единичная функция Хевисайда. Базисные, нормализованные и кубические сплайны. Значение метода коллокации. Линейные однородные и неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.