Методика оценки пульсационной составляющей давления и пиковых нагрузок на фасадные конструкции по результатам стационарных расчетов осредненной энергии турбулентных пульсаций. Схема дискретизации - важнейший аспект решения уравнений Навье-Стокса.
Способы дискретизации уравнений механики и принципы построения сетки в области интегрирования. Численное решение уравнений упругости, содержание и закономерности построения соответствующих моделей. Формирование и значение нерегулярной треугольной сетки.
Решение задачи динамики, состоящей в восстановлении неизвестных граничных управлений, порождающих наблюдаемое движение динамической системы. Описание динамической системы как краевой задачи для уравнения с частными производными гиперболического типа.
Разработка комплекса программ, позволяющего исследовать газодинамические течения с ударными и детонационными волнами, отслеживать распространение возмущений, определять места зарождения газодинамических разрывов. Пути получения высокоточных решений.
Cоздание производительного, универсального и простого в реализации метода численного расчета нечетких уравнений разного типа. Моделирование конкретных физиологических систем, включающее анализ погрешности результатов и их чувствительности к параметрам.
Рассмотрение основных особенностей решения задачи Коши методом Эйлера-Коши, варианты оценки погрешностей вычислений. Общая характеристика способов постройки графиков решения дифференциального уравнения и интерполяционного многочлена в одних осях.
Решение дифференциального уравнения методом Эйлера-Коши. Интерполяционный многочлен Лагранжа. Метод наименьших квадратов. График решения дифференциального уравнения. Расчет погрешности аппроксимации. Множество решений дифференциального уравнения.
Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.
Решение задачи Коши для дифференциальных уравнений методом Милна. Использование метода для систем уравнений первого порядка или приведенных к таким. Оценка устойчивости метода и числа шагов. Практическая сторона использования. Решение 30 примеров.
Определение корней квадратного уравнения аналитическим способом. Построение графика разрешающей функции в окрестности наибольшего из корней, а также численное определение наибольшего корня с использованием простейшей итерационной формулы первого вида.
Теорема о существовании корня непрерывной функции. Методы отделения и уточнения корней: алгоритмы, скорость сходимости, условия применимости, их результаты. Геометрическая интерпретация методов Ньютона и хорд. Варианты выбора начального приближения.
Матричная запись системы данных. Методы простых и покоординатных итераций. Типы их сходимости. Оценки итерационного процесса. Алгоритм Ньютона и его модификация: двухшаговый, разностный (дискретный) и с последовательной аппроксимацией обратных матриц.
Изучение теоремы о верхнем и нижнем разложении матрицы, имеющей ненулевую диагональ. Ознакомление с расчетными формулами, используемыми для построения матриц. Очерк математических выражений по методу Гаусса и алгоритмы для ряда системных уравнений.
Нахождение корней трансцендентных и нелинейных уравнений комбинированным методом, методами хорд и касательных. Формулы для уточнения корня уравнения. Построение графика функции, графиков первой и второй производной. Графический метод отделения корней.
Основные особенности определения величины критической силы действующей на стержень, один конец которого закреплен. Изучение методов приближенных вычислений с заданной степенью точности. Характеристика геометрического смысла метода простой итерации.
- 4456. Численные методы
Определение устойчивости линейных алгебраических уравнений. Содержание методов Гаусса и LU-разложения. Правила вычислений с помощью квадратного корня и трехдиагональной матрицы. Понятие интеграла и аппроксимации функций. Основы решения задачи Коши.
- 4457. Численные методы
Рассмотрение решений систем линейных алгебраических уравнений. Описание численных методов нелинейных уравнений, интерполяция и приближение функции. Краевые задачи, примеры расчетов и способов решения. Изучение метода обратной интерации, его характеристика
- 4458. Численные методы
Изучение сущности и особенностей построения интерполирующей функции. Рассмотрение метода полиномиальной интерполяции Шарля Эрмита. Анализ интерполяционных формул для функций двух переменных. Специфика численного дифференцирования и его погрешность.
- 4459. Численные методы
Описание численных методов решения алгебраических и дифференциальных уравнений. Использование языка программирования Visual Basic для реализации алгоритмов. Определение корней уравнения методом хорд и касательных. Аппроксимация и интерполяция функций.
- 4460. Численные методы
Численное решение нелинейных уравнений. Методы деления отрезка пополам, Ньютона (метод касательных) и простой итерации. Решение систем линейных алгебраических уравнений. Методы Гаусса, обратной матрицы, прогонки, простой итерации (метод Якоби), Зейделя.
- 4461. Численные методы
Основные методы и алгоритмы вычислительной математики. Точные и приближенные числа, классификация погрешностей. Интерполирование функций, формула Лагранжа. Методы решения нелинейных уравнений, матричных уравнений и задач на собственные значения.
- 4462. Численные методы алгебры
Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.
Рассмотрение равновесной модели. Постановка и алгоритм решения краевой задачи. Численный анализ закона дисперсии. Модель корональной петли с продольным электрическим током. Решение линейных уравнений магнитной гидродинамики в идеально проводящей среде.
Основные уравнения для решения постановки пространственных нестационарных задач теории термоупругопластичности. Геометрические соотношения и определяющие уравнения, описывающие неизотермические процессы нагружения с учетом траектории деформирования.
Методы численного интегрирования: формулы прямоугольников, трапеций, Симпсона и Эйлера. Интегрирование кратных интегралов. Метод ячеек. Повторное применение квадратурных формул. Листинг программы нахождения значений интеграла от функции одной переменной.
Сущность метода половинного деления. Метод итерации как один численных методов решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Метод Ньютона как итерационный численный метод нахождения корня (нуля).
Известные формулы теории матриц для обыкновенных дифференциальных уравнений. Вычисление оболочек составных и со шпангоутами простейшим методом "сопряжения участков интервала интегрирования". Свойства переноса краевых условий в методе С.К. Годунова.
Основные принципы построения численных методов решения стохастических дифференциальных уравнений (СДУ). Определение жесткой системы СДУ. Анализ основных свойств: устойчивость, порядок сходимости и точность аппроксимации. Метод решения систем жестких СДУ.
Изучение особенностей интегральных уравнений, которые в совокупности с численными методами их решения являются средством исследования и математического моделирования задач математической физики. Изучение метода моментов, итераций, Ритца, Келлога.
Основные правила и формулы решения нелинейных уравнений. Процесс отделения корней, характеристика основных проблем. Особенности применения графического и аналитического методов. Конечные методы уточнения корней нелинейного уравнения. Метод дихотомии.