Сущность и разработка метода парных сравнений, сферы его использования и интерпретация результатов. Процедура сбора данных. Условие транзитивности и причины её нарушения. Шкалограммный анализ Гуттмана, этапы построения шкалы и проверка её качества.
Метод планирования действий автономных агентов, использованный при создании команды "PSI", для участия в чемпионате мира по игре в футбол среди программ и роботов RoboCup’99. Элементарные планы как "основные навыки" агента. Назначение планирующей системы.
Формування в учнів розуміння схеми дій, що відповідають змісту поняття "метод площ" і вмінь застосовування цієї схеми під час розв'язування задач. Варіанти математичного диктанту. Виконання письмових вправ за готовими рисунками. Приклади тестових завдань.
Розгляд класичного процесу ризику (модель Крамера-Лундберга), що описує стохастичну еволюцію капіталу страхової компанії. Виведення інтегральних рівнянь для ймовірності розорення як функції початкового капіталу компанії для узагальнень процесу ризику.
Задача о числе счастливых билетов и формула Бинома Ньютона. Определение производящей функции. Восстановление элементов последовательностей по известным производящим функциям. Числа и многочлены Фибоначчи и Люка. Последовательность с двумя индексами.
- 1986. Метод прямоугольников
Задача вычисления интегралов. Дополнительный член в формуле прямоугольников. Вычисление определенных интегралов по формуле прямоугольников. Использование формулы Ньютона-Лейбница. Определение площади криволинейной фигуры. Формула среднего значения.
- 1987. Метод прямоугольников
Способы численного интегрирования функции одной переменной. Вычисление значения определенного интеграла методом правых прямоугольников. Деление криволинейной трапеции на конечное число частей. Определение площади ступенчатой фигуры. Построение блок-схемы.
Сущность принципа резолюций в логике высказываний. Доказательства невыполнимости, основанные на данном принципе. Правила и примеры использования метода доказательства теорем через поиск противоречий. Стратегии решении задач в алгебре предикатов.
Загальна характеристика методів рішення систем лінійних рівнянь. Метод релаксації у його найпростішій формі. Використання метода релаксації змінних в системах лінійних рівнянь. Підставлення знайдених значень кореню у вихідні рівняння для контролю.
- 1990. Метод Рунге-Кутты
Разработка итеративных методов явного и неявного приближенного вычисления К. Рунге и М.В. Куттой. Описание динамических систем с непрерывным временем в интегрированной среде разработки программного обеспечения Delphi 7 с помощью метода Рунге–Кутты.
Характеристика модифицированных методов Эйлера. Определение порядка аппроксимации. Рассмотрение адаптивных процедур Рунге-Кутты. Построение фазового портрета в системе координат для поставленной задачи. Определение особенностей пересчета по правилу Рунге.
Встановлення рівності Карлемана та теореми Йенсена-Літтлвуда для прямокутника. Характеристика Неванлінни для мероморфних у півсмузі функцій. Отримання критерію скінченності голоморфної функції методом рядів Фур'є. Доведення еквівалента гіпотези Рімана.
Встановлення нового варіанту рівності Карлемана для прямокутника, введення за її допомогою характеристики Неванлінни для мероморфних у півсмузі функцій. Встановлення критерію скінченності лямбда-типу голоморфної у півсмузі функції методом рядів Фур'є.
Основные достижения в области методов решения оптимизационных задач. Теоретические основы математического аппарата поиска оптимума. Определение значения принципа максимума и динамического программирования в области задач оптимального управления.
Ітераційні алгоритми побудови скінченноелементного базису при наближеному розв’язанні рівнянь методом скінченних елементів. Апостеріорні оцінки величин, що відбивають зменшення квадрату похибки у енергетичній нормі на кожному кроці ітераційного процесу.
Побудування розв’язку у просторі узагальнених функцій однорідної задачі Рімана для півплощини в особливому випадку. Доведення теорем його існування та єдиності. Отримання інтегрального зображення в смузі. Запропонування підходу до побудови розв’язків.
Розробка нових математичних методів для розв’язання крайових задач теорії аналітичних функцій. Розширення класу інтегральних рівнянь типу згортки зі змінними коефіцієнтами, які ефективно розв’язуються за допомогою перетворення Фур’є у квадратурах.
Общая характеристика теоремы Больцеана-Коши. Знакомство с особенностями метода равномерного поиска и метода бисекции. Анализ основных проблем поиска интервалов, содержащих корень, с заданной степенью точности. Рассмотрение способов локализации отрезков.
- 1999. Метод умовних найменших квадратів дослідження поліноміальних регресійних моделей без вільного члена
Особливості безпосереднього використання метода найменших квадратів. Підхід до побудови емпіричного рівняння регресії, всі стандартні помилки коефіцієнтів регресії якого менші від відповідних показників рівняння регресії, на прикладі фіксованої вибірки.
Системи звичайних диференціальних рівнянь в стандартній за Боголюбовим формі, праві частини яких залежить від функціональних параметрів. Існування оптимального керування початкової задачi оптимального керування та вiдповiдної усередненої задачi.
Чисельно-аналітичний метод дослідження крайових задач із двоточковими, багатоточковими та інтегральними крайовими умовами, які гарантують їх близькість. Розв’язність крайових задач для деяких класів систем диференціальних рівнянь із змінним запізненням.
Разработка подхода к ускоренному численному решению динамических задач большой размерности. Характеристика методов обоснования и тестирования вычислительных алгоритмов расчета декомпозированной задачи с применением современных компьютерных технологий.
Метод помехоустойчивого кодирования данных алгебраическими сверточными кодами в частотной области с применением быстрого преобразования Фурье Гуда-Томаса в конечных полях. Метод частотного кодирования сверточных кодов. Оценка вычислительной сложности.
Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.
Дослідження вільних нелінійних коливань елементів тонкостінних конструкцій, які можуть бути представлені пологими оболонками та пластинами довільної форми. Вплив фізичних і геометричних факторів на амплітудно-частотні залежності оболонок складної форми.
Модель згладжування фізичного поля в квадратній пластині за допомогою білінійної інтерполяції. Конструювання функцій для двовимірних дискретних елементів лагранжева, ермітова типу способом геометричного моделювання. Етапи барицентричного усереднення.
Відкриття несумірності діагоналі квадрата з його стороною. Виникнення проблем ірраціонального та трансцендентного числа. Методи встановлення ірраціональності чисел. Границі дробів, що мають ірраціональність. Означення та властивості трансцендентних чисел.
Задачі системи диференціальних рівнянь із запізненням та обмеженнями. Варіанти ітераційного та проекційно-ітеративного методів відшукання наближених розв’язків системи лінійних диференціальних рівнянь із запізненням та обмеженнями, умови оцінки похибки.
Встановлення умов розв’язуваності крайових задач для лінійних та слабконелінійних інтегро-диференціальних рівнянь з параметрами та обмеженнями і розробка ефективних методів проекційно-ітеративного типу побудови їх розв’язків. Теорії інтегральних рівнянь.
Розгляд крайової задачі для системи диференціальних рівнянь з імпульсним впливом у фіксовані моменти часу з параметрами та додатковими умовами. Побудова ітераційного і проекційно-ітеративного методів знаходження наближених розв’язків лінійної задачі.