Використання апріорної інформації про частоти помилок, допущених експертами при оцінюванні випадкового стану в умовах прийняття колективних рішень в умовах ризику. Вдосконалення методу множення інтервалів у формі центр-радіус у розширеному просторі.
Розробка інтерлокаційних формул та їх застосуваня при створенні методів побудови нормалізованих рівнянь тривимірних об'єктів. Розрахунок фізико-механічних полів. Побудова математичної та комп’ютерної моделей для прогнозування екологічного стану.
Опис послiдовностей нулiв та інтерполяційних послідовностей класів функцiй, аналiтичних в крузі, що визначаються додатною зростаючою опуклою відносно логарифма мажорантою. Вирішення інтерполяційної задачі аналітичних в крузі функцій скінченного порядку.
Абстрактне параболічне рівняння. Умови секторіальності еліптичних операторів. Неперервний інтерполяційний метод. Умови існування та єдиності розв'язків задачі Коші. Типи в банаховому просторі. Диференціювання аналітичних функцій операторного аргументу.
Критерії рівномірної додатності власних підпросторів самоспряженого розширення. Аналіз моделі для бідотичної інтерполяційної задач. Проблеми застосовуння крайових значень в теорії розширень. Симетричність операторів у просторах з індефінітною метрикою.
Головна особливість множини операторних поліномів простої структури, на якій розглянуто побудову нових інтерполянтів. Поглиблена характеристика еквівалентності розв’язку основної задачі ідентифікації поліноміальних систем методом ортогональних моментів.
Поняття інтерполяції як різновиду апроксимації, при якій крива побудованої функції проходить точно через наявні точки даних. Характеристика теореми Вейерштрасса. Розгляд першої та другої інтерполяційної формули Ньютона. Оцінка похибок центральних формул.
Класичні та сучасні різницеві методи інтерполяції. Розробка теоретичних засад теорії інтерполяції різницевими методами функції трьох змінних. Аналоги математичних моделей різницевих методів інтерполяції. Різницеві методи для тривимірної функції.
- 1539. Інтерполяція сплайнами
Вивчення методу інтерполяції сплайнами. Складання програми мовою програмування Borland C++ 4.5. Основні поняття теорії інтерполяції. Геометрична задача інтерполяції для функції однієї змінної. Інтерполяційна формула Лагранжа. Квадратичний сплайн.
- 1540. Інтерполяція функцій
Обчислення заданої функції для проміжних значень аргументів за формулами Лагранжа. Виконання інтерполяції функції з використанням вбудованих сплайн-функцій пакета, що складається з кусків поліномів. Побудова графіків вихідної та інтерпольованої функцій.
Теоретичні питання обчислювальної геометрії плоских фігур. Алгоритми конструювання криволінійних форм з урахуванням заданих характеристик та їх програмна реалізація. Методика конструювання плоских форм у просторі як основа геометричного моделювання.
- 1542. Ірраціональні обчислення
Використання області допустимих значень при розв’язуванні ірраціональних нерівностей. Пошук та дослідження похідної підкореневої функції. Вживання методів інтервалів та рівносильних переходів. Введення заміни шуканої змінної для спрощення нерівності.
- 1543. Ірраціональні рівняння
Поняття ірраціонального рівняння як невідомого, який входить під знаком чи радикала, невідоме зводиться в ступінь із дробовим показником. Характеристика основних способів їх розв'язку. Порядок зведення рівняння в квадрат та використання методу заміни.
Наведення теорії критичних точок довільного відображення Rn в Rm. Дослідження проекцій k-вимірних підмножин Rn на k-вимірні площини. Доведення теорем, використовуючи властивості іррегулярних підмножин Gnk. Дослідження теорій розмірності та відображень.
Вивчення іррегулярних підмножин многовидів Грассмана та їх властивостей. Проблема Гуревича-Волмена та структура типової множини рівня відображень Rn в Rm. Доповнення до кожної іррегулярної множини. Загальний план досліджень відділу теорії наближень.
Розробка теорії многозначних напівпотоків (многозначних аналогів однопараметричних напівгруп). Доведення теореми про існування у цих напівпотоків глобальних атракторів. Диференціальне включення в банаховому просторі з напівнеперервною правою частиною.
Дослідження питань існування елемента найкращого рівномірного наближення для випадку, коли похідні поліномів лежать в обмеженому діапазоні. Вивчення властивостей мінімальних допустимих пар множин. Оцінка величини найкращого наближення в діапазоні.
- 1548. Історико-методичний аналіз розвитку методів розв’язування задач з алгебри в загальноосвітній школі
Методичні вимоги до сучасного використання методів та способів розв’язування алгебраїчних задач. Історико-методичний аналіз розвитку методів розв’язування задач з алгебри, алгебри і початків аналізу; виявлення основ досягнення і тенденції в їх розвитку.
- 1549. Історія арифметики
Виникнення та розвиток числових уявлень, лічби і поняття числа. Історія нумерації і систем числення. Еволюція сучасних цифр. Основні етапи розвитку дробів. Натуральні і дробові числа. Велика та мала теореми Ферма. Теорія ірраціональних та дійсних чисел.
Розподілення дискретної величини за геометричним законом. Перевірка умови нормування за статистичними вибірками. Дослідження функції на екстремум. Характер критичної точки. Розрахунок диференціальної ентропії. Експоненціальний розподіл ймовірностей.
Характеристика биографии выдающегося ученого-математика профессора Л.И. Волковыского и списка воспитанников его Львовской, Пермской и Ташкентской научных школ. Список защитивших кандидатские диссертации под руководством профессора Л.И. Волковыского.
Исследование жизни, научной и педагогической деятельности Сергея Николаевича Черникова. Алгебра и теория линейных неравенств, линейная оптимизация и приложения. Издание книги, посвященной юбилею С.Н. Черникова. Свертывание систем линейных неравенств.
Изучение групп с заданным количеством классов неинвариантных сопряженных подгрупп. Число классов в периодической неабелевой группы, содержащей бесконечную абелеву подгруппу и имеющая конечное множество классов неинвариантных сопряженных подгрупп.
Вещественное число порядка как класс эквивалентности, если между элементами этих множеств можно установить взаимно однозначное соответствие. Построение вещественных чисел исходя из рациональных чисел согласно теории немецкого ученого Георга Кантора.
- 1555. К вопросу о математическом моделировании процесса биотермической обработки осадков сточных вод
Использование исследовательской модели для выяснения потенциальных возможностей изучаемого объекта. Основные этапы и принципы разработки математической модели. Определение главных требований, которым должны удовлетворять модели реальных процессов.
Организация учебного процесса при изучении дисциплины "Математические методы и модели в расчетах на ЭВМ" на примере задачи оптимального производства продукции. Составление модели задачи линейного программирования. Поиск максимума линейной функции.
Рассмотрение вопросов сравнительной оценки систем по уровню гарантоспособности. Качественные метрики атрибутов, отвечающие за эффективность работы. Разработка базового подхода к количественной оценке. Показатели метрик и атрибутов гарантоспособности.
Изучение геометрии криволинейных поверхностей как важнейший этап в профессии архитектора. Поверхность как совокупность всех последовательных положений некоторой перемещающейся в пространстве линии. Геометрический анализ известных архитектурных сооружений.
Понятия и основные отличия между простейшими и сложными динамическими системами. Структура современных моделей. Организация компьютерного эксперимента с моделью, имитационное моделирование. Использование технологии объектно-ориентированного моделирования.
Открытие К.Ф. Гауссом основного закона погрешностей, с которым связан способ наименьших квадратов. Разнообразие методов обработки результатов эксперимента. Эффективное использование избыточной информации. Противоречивость системы линейных уравнений.