- 1441. Исследование функций
Решение математических задач. Нахождение пиков функции. Вычисление пределов, определенных и неопределенных интегралов; площади фигуры, ограниченной кривыми. Исследование функций дифференциальными методами. Уравнение касательной и нормали к кривой.
Выявление вида неопределенности и вычисление предела функций. Формулы производной степени и дроби функции, исчисление производной. Определение непрерывной числовой прямой и исследование функции, её критические точки. Вычисление неопределенных интегралов.
Основные понятия и утверждения иррациональных уравнений, базовые принципы их решения. Теоремы о равносильности преобразований. Примеры общих классов иррациональных уравнений. Разработка и пример решения системы упражнений на каждый класс уравнений.
Описание алгоритма Ванга-Ландау для подсчета плотности состояний уровней энергии. Построение алгоритма Ванга-Ландау с матрицами перехода функций f=1/t и анализ погрешностей. Пример аналитического решения матрицы переходов для одномерной модели Изинга.
Изучение поведения людей при решении задач многокритериального выбора. Проведение анализа при помощи прикладной системы, реализующей декомпозицию процесса решения многокритериальной задачи на этапы с проведением на каждом из них парных сравнений.
Предпосылки возникновения статистики. Функции и задачи служб-учреждений государственной статистики. Характеристика английской научной школы политических арифметиков, её отличие от немецкой описательной школы. Составление обзоров о конъюнктуре рынка.
Изучение истории математики как учебного предмета. Формирование умений по построению логических доказательств и математических моделей как общие направления обучению математике в школе. Особенности теоретической и прикладной математики в школьном курсе.
Геометрия как одна из наиболее древних математических наук. Творчество Евклида и его значение для математики. Изучение истории развития геометрии. Примеры доказательства пятого постулата Евклида. Рассмотрение аксиоматического построения геометрии.
История введения в школьный курс математики темы "Иррациональные числа", краткая характеристика материала учебников данного периода. Исследование начальной информации про иррациональные числа и действия с ними. Извлечение числа из кубического корня.
Характеристика причин возникновения дробей. Анализ единичных, систематических и дробей общего вида. Описание особенностей записи дробных чисел в Древнем Египте, Вавилоне, в Древней Греции и Риме, на Руси. Изучение старинных задач с дробными числами.
Ознакомление с ключевыми этапами становления математики. Формирование арифметики, геометрии и алгебры. Предпосылки создания системы счисления. Значение вавилонской и египетской цивилизаций в развитии математики. Анализ греческих методов вычислений.
Возникновение и развитие математики как способа решения жизненно-важных для человека задач. Первые вычисления и Вавилон как родина математического знания, использование математики в древности. Современные цифры, вклады стран в развитие математики.
Зарождение счета в глубокой древности. Возникновение и формирование понятия натурального числа. Обоснование системы натуральных чисел. Натуральные числа, основные функции натуральных чисел. Эволюция развития и значение нуля для современной математики.
Теория вероятностей как математическая наука, позволяющая по вероятностям одних случайных событий находить возможность появления других, связанных каким-либо образом с первыми. Периодизация истории науки и ее применения в естествознании и технике.
Исследование истории возникновения и развития тригонометрии как раздела математики, изучающего тригонометрические функции и их приложения к геометрии. Определение расстояний до недоступных объектов и связь тригонометрии с практическими нуждами человека.
Определение сущности числа, история его происхождения. Основные функции количественных натуральных числовых единиц. Система записи чисел в Древнем Риме и Вавилоне. Рассмотрение особенностей счета у народа майя. Славянские цифровые знаки-буквы с титлами.
Подобие цифр у древних людей. Римская система нумерации. Возникновение и особенности написание арабских цифр. Буквенное обозначение чисел у славянских народов. Десятичная и двоичная системы счисления. Таблицы сложения и умножения для однозначных чисел.
Сущность и особенности начертательной геометрии. Первые идеи об ортогональном проецировании пространственных фигур на плоскость. Применение теории геометрических преобразований. История возникновения и развития начертательной геометрии в России.
- 1459. История математики
Математика на клинописных табличках. Система счисления, созданная вавилонянами. Египетская непозиционная десятичная система. Дедуктивный характер греческой математики. Величайший математик древности - Архимед. Великие геометры эпохи Возрождения.
- 1460. История математики
Греческая система счисления, основанная на использовании букв алфавита. Греческая тригонометрия и ее приложения в астрономии. Начало современной математики, достижения в алгебре. Создание дифференциального и интегрального исчислений, основные методы.
Обращение к истокам зарождения математики. Описание истории возникновения счета и измерения как средств сравнения различных чисел, длин, площадей и объемов. Рассмотрение древних способов записи чисел, возникновения понятий о геометрических фигурах.
Описание удивительной таблицы натуральных логарифмов, определенных из кинематических соображений. Начало математического анализа в комплексной области, теории функций комплексного переменного. Точное определение иррациональных и трансцендентных чисел.
Возникновение необходимости в дробных числах. Дроби в древнем Египте, Риме и других государствах древности. Математический папирус Ринда. Составные части Уаджета (или глаза Гора). Правила измерения длины, площади, объёма, время и других величин.
Понятие "комплексные числа": история их возникновения и роль в процессе развития математики. Действия над двумерными числами и их значение для физики и техники. Процесс расширения понятий этой категории математики от натуральных к действительным.
- 1465. История открытия корня
Извлечение квадратного корня. Геометрическое значение квадратного корня. Этимология термина "корень", происхождение и изменение символики. Вклад в развитие математики Джероламо Кардано, Кристофа Рудольфа, Рене Декарта, Джона Валлиса, Исаака Ньютона.
Обнаружение первых задач, связанных с извлечением квадратного корня. Применение теоремы Пифагора для нахождения стороны прямоугольного треугольника. Использование в математике мнимых чисел, понимаемых как квадратные корни из отрицательных чисел.
Место Рене Декарта в истории математики. Научное описание прямоугольной системы координат в работе "Рассуждение о методе". Рассмотрение связи геометрии и алгебры с помощью скалярного произведения векторов и угла между ними в научных трудах Декарта.
Деление и история алгебры, происхождение ее термина. Древнейшие сочетания по алгебре, появление от арабов и ее развитие в Европе в эпоху Возрождения. Решение уравнений третей и четвёртой степени. Некоторые математические знаки и даты их возникновения.
Понятие, сущность, значение и происхождение алгебры, характеристика её деления, отличия от арифметики. Процесс возникновения и развитие науки у арабов и европейцев, история её совершенствования. Первооткрыватели алгебры, их деятельность и работы.
Алгебра - раздел математики, представляющий собой обобщение и расширение арифметики. Вклад Диофанта в развитие алгебраической науки. История открытия правил для решения кубических уравнений. Сферы применения теории рекуррентных последовательностей.