Методика формулювання уявлення учнів про подання інформації у вигляді кругових та стовпчастих діаграм. Методи розв’язування задач, які передбачають побудову діаграм. Активізація пізнавальної діяльності учнів. Формування вміння висловлюти власні думки.
Ф. Беллар как один из ученых вычисливший число Пи с рекордной точностью. Личная жизнь Беллара и формула вычисления числа. Числа, которыми можно назвать и вычислить Пи: подходящие (приближенные) и десятичные дроби, заглавные латинские буквы и целые числа.
- 1743. Курс высшей математики
Формулы Бейеса и Бернулли. Понятие непрерывной случайной величины. Биноминальное распределение и распределение Пуассона. Числовые характеристики дискретных случайных величин. Условные законы распределения, линейная регрессия. Закон больших чисел.
Основные понятия теории вероятностей. Закон распределения дискретной случайной величины. Числовые характеристики дискретных случайных величин. Свойства и вычисления дисперсии. Условное математическое ожидание. Закон больших чисел. Неравенство Чебышева.
Интегральное и дифференциальное исчисления функций одной переменной. Числовые множества. Предел и непрерывность функций. Производная и дифференциал. Кривизна и кручение кривой. Интегрирование рациональных дробей. Критерий Коши собственного интеграла.
История софизмов и парадоксов как ложных высказываний, кажущихся верными при поверхностном рассмотрении. Определение понятий "софизм", "парадокс", "курьез" в математической логике. Классификация математических софизмов и описание математических курьезов.
- 1747. Лагранж Жозеф Луи
Обзор биографии, научной деятельности французского математика, астронома и механика Жозефа Луи Лагранжа. Первые достижения. Берлинский период. Научная деятельность в годы Французской революции. Последние годы. Труды Жозефа Луи Лагранжа. Интересные факты.
- 1748. Ламана і многокутник
Ламана та її елементи. Проста ламана, многокутник та його елементи. Периметр многокутника, опуклий многокутник. Внутрішній та зовнішній кути многокутника. Властивість довжини ламаної. Многокутник, вписаний у коло та многокутник, описаний навколо кола.
- 1749. Ланцюгові дроби
Роль ланцюгових дробів в теорії чисел, теорії ймовірності, в обчислювальній математиці. Скінченні ланцюгові, підхідні дроби. Квадратичні ірраціональності і періодичні ланцюгові дроби. Представлення дійсних чисел ланцюговими дробами. Загадка Григорія ХІІІ.
- 1750. Ланцюгові дроби
Представлення раціональних чисел ланцюговими дробами. Представлення дійсних ірраціональних чисел правильними нескінченними ланцюговими дробами. Наближення дійсного числа раціональними дробами із заданими обмеженнями на знаменник. Теорема Діріхле.
История развития теории обыкновенных дифференциальных уравнений, их значение для решения задач механики. Дифференциальные уравнения первого и высшего порядков, их нормальные системы. Задачи, приводящие к понятию систем дифференциальных уравнений.
Основные понятия математической статистики. Оценка параметров, проверка гипотез и основы регрессионного анализа. Точечное и интегральное оценивание и их эффективность. Критерии согласия и линейная регрессия. Метод наименьших квадратов. Теорема Пирсона.
Понятие алгоритма, неформальная вычислимость. Частично-рекурсивные функции. Элементарная арифметика и неполнота. Арифметические функции и отношения. Варианты теории чисел. Теорема и последовательность Гудстейна. Задачи разрешения и задачи оптимизации.
Биографические сведения о Леонарде Эйлере - идеальном математике XVIII в. Понятие прямой Эйлера как прямой с ортоцентром, центроидом и центром описанной окружности треугольника. Доказательства теоремы о многогранниках. Теория графов и задача Эйлера.
Биография, вклад в развитие механики, физики, астрономии Л. Эйлера — швейцарского, немецкого и российского математика, автора исследований по математическому анализу, дифференциальной геометрии, приближённым вычислениям, кораблестроению, теории музыки.
Математические достижения Леонардо Фибоначчи, их влияние на экономику, финансы и некоторые области архитектуры. Краткие биографические данные известного математика. Основные идеи "Книги абака", Числовая последовательность Фибоначчи и золотое сечение.
Десятичная система счисления и арабских цифр, начало использования которых в Европе было положено Фибоначчи. Основные приёмы решения задач коммерческой арифметики, основанные на пропорциях. Характеристика алгоритма числовой последовательности Фибоначчи.
Изучение биографических данных о первом математике средневековой Европы Леонардо Пизанском (Фибоначчи). Рассмотрение сущности и особенностей математической последовательности чисел Фибоначчи. Определение геометрического смысла "золотого сечения".
Сущность аллергии, характеристика основных симптомов ее проявления. Применение диеты как способа избавления от аллергии. Особенности лечебного питания при бронхиальной астме, поллинозе. Специфика профилактики и дополнительные меры предохранения.
- 1760. Лечение периодонтита
Определение целесообразности сохранения зуба. Лечение острого или хронического периодонтита. Удаление пломбы и препарирование кариозной полости. Восстановление костной ткани в области очага деструкции. Пломбирование каналов стеклоиномерным цементом.
Применение рядов Фурье к линеаризации разрывной функции и подбором количества коэффициентов ряда для более точного наложения ряда на функцию. Свойства преобразования при интегрировании, дифференцировании, а также сдвиге выражения по аргументу и свертке.
- 1762. Линеаризация
Нелинейное дифференциальное уравнение. Линеаризованное уравнение динамики. Передаточная функция линеаризованного звена. Переходный процесс на выходе линеаризованного звена при ступенчатом входном сигнале. Коэффициент усиления в установившемся режиме.
Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
Метод наименьших квадратов: сущность и основное содержание, особенности использования в решении задачи нахождения одной результирующей прямой и анализе экспериментальных результатов на принадлежность нескольким прямым. Оценка эффективности метода.
- 1765. Линейная алгебра
Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.
- 1766. Линейная алгебра
Матрицы и операции над ними. Определители и их свойства. Обратная матрица. Системы линейных алгебраических уравнений и их решение по формулам Крамера и методом Гаусса. Теорема Кронекера-Капелли. Собственные значения и собственные векторы матрицы.
- 1767. Линейная алгебра
Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.
- 1768. Линейная алгебра
Некоторые простейшие свойства линейных пространств, базис и координаты элементов линейного пространства. Критерий совместности общей линейной системы уравнений. Основные метрические понятия в евклидовом пространстве. Неравенство Коши-Буняковского.
- 1769. Линейная алгебра
Матрица и определители. Применение способа разложения по элементам столбца (строчки). Алгебраические дополнение элемента матрицы. Решение системы линейных уравнений. Составление общего уравнения плоскости, проходящей через точку перпендикулярно вектору.
- 1770. Линейная алгебра
Изучение формул вычисления определителей второго и третьего порядков. Применение методов Крамера и Гаусса для решения систем линейных уравнений. Аналитическая геометрия на плоскости и в пространстве. Представление комплексных чисел и операции над ними.