Биография, вклад в развитие механики, физики, астрономии Л. Эйлера — швейцарского, немецкого и российского математика, автора исследований по математическому анализу, дифференциальной геометрии, приближённым вычислениям, кораблестроению, теории музыки.
Математические достижения Леонардо Фибоначчи, их влияние на экономику, финансы и некоторые области архитектуры. Краткие биографические данные известного математика. Основные идеи "Книги абака", Числовая последовательность Фибоначчи и золотое сечение.
Десятичная система счисления и арабских цифр, начало использования которых в Европе было положено Фибоначчи. Основные приёмы решения задач коммерческой арифметики, основанные на пропорциях. Характеристика алгоритма числовой последовательности Фибоначчи.
Изучение биографических данных о первом математике средневековой Европы Леонардо Пизанском (Фибоначчи). Рассмотрение сущности и особенностей математической последовательности чисел Фибоначчи. Определение геометрического смысла "золотого сечения".
Сущность аллергии, характеристика основных симптомов ее проявления. Применение диеты как способа избавления от аллергии. Особенности лечебного питания при бронхиальной астме, поллинозе. Специфика профилактики и дополнительные меры предохранения.
- 1776. Лечение периодонтита
Определение целесообразности сохранения зуба. Лечение острого или хронического периодонтита. Удаление пломбы и препарирование кариозной полости. Восстановление костной ткани в области очага деструкции. Пломбирование каналов стеклоиномерным цементом.
Применение рядов Фурье к линеаризации разрывной функции и подбором количества коэффициентов ряда для более точного наложения ряда на функцию. Свойства преобразования при интегрировании, дифференцировании, а также сдвиге выражения по аргументу и свертке.
- 1778. Линеаризация
Нелинейное дифференциальное уравнение. Линеаризованное уравнение динамики. Передаточная функция линеаризованного звена. Переходный процесс на выходе линеаризованного звена при ступенчатом входном сигнале. Коэффициент усиления в установившемся режиме.
Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
Метод наименьших квадратов: сущность и основное содержание, особенности использования в решении задачи нахождения одной результирующей прямой и анализе экспериментальных результатов на принадлежность нескольким прямым. Оценка эффективности метода.
- 1781. Линейная алгебра
Применение матричного исчисления к решению систем линейных уравнений. Аналитическая геометрия и векторная алгебра. Математический анализ, предел функции и свойства производных. Основные теоремы дифференциального исчисления. Схема исследования функций.
- 1782. Линейная алгебра
Матрицы и операции над ними. Определители и их свойства. Обратная матрица. Системы линейных алгебраических уравнений и их решение по формулам Крамера и методом Гаусса. Теорема Кронекера-Капелли. Собственные значения и собственные векторы матрицы.
- 1783. Линейная алгебра
Расчет нахождения модуля вектора, скалярного произведения, векторного и смешанного произведения векторов. Нахождение заданных координат с помощью формулы расчета по методу Крамера. Вычисление вращающего момента силы, периметра и площади треугольника.
- 1784. Линейная алгебра
Понятие экономико-математической модели задачи (составление системы алгебраических уравнений). Определение объема выпуска продукции каждого вида при заданных запасах сырья и особенности решения: методом Крамера, матричным методом и методом Гаусса.
- 1785. Линейная алгебра
Матрица и определители. Применение способа разложения по элементам столбца (строчки). Алгебраические дополнение элемента матрицы. Решение системы линейных уравнений. Составление общего уравнения плоскости, проходящей через точку перпендикулярно вектору.
- 1786. Линейная алгебра
Изучение формул вычисления определителей второго и третьего порядков. Применение методов Крамера и Гаусса для решения систем линейных уравнений. Аналитическая геометрия на плоскости и в пространстве. Представление комплексных чисел и операции над ними.
- 1787. Линейная алгебра
Некоторые простейшие свойства линейных пространств, базис и координаты элементов линейного пространства. Критерий совместности общей линейной системы уравнений. Основные метрические понятия в евклидовом пространстве. Неравенство Коши-Буняковского.
- 1788. Линейная алгебра
Матрицы и определители. Линейные операции над матрицами и их умножение. Свойства определителей. Системы линейных алгебраических уравнений. Метод Крамера и Гаусса Ранг. Теорема Кронекера-Капелли. Системы линейных однородных уравнений. Модель Леонтьева.
- 1789. Линейная алгебра
Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.
Системы линейных уравнений и неравенств. Аналитическая геометрия на плоскости. Числовая последовательность и ее предел. Основные теоремы теории вероятностей. Первообразная и неопределенный интеграл. Основы математической статистики. Закон больших чисел.
Решение систем линейных уравнений методом Гаусса, Крамера и обратной матрицы. Геометрия на плоскости и в пространстве, каноническое уравнение прямой. Раскрытие неопределенностей и вычисление пределов. Производные и дифференцирования сложной функции.
Линейные уравнения и неравенства с двумя неизвестными. Определители произвольного порядка. Системы линейных алгебраических уравнений. Векторы и линейные операции над ними. Аналитическая геометрия на плоскости. Преобразование декартовых координат.
Элементы линейной алгебры, векторного анализа и аналитической геометрии. Определение значения матричного многочлена. Разложение элемента по рядам, сведение к треугольному виду. Матричное уравнение. Исследование системы на совместность методом Гаусса.
Понятие и виды матриц, операции с ними. Способы вычисления определителей второго, третьего и высших порядков. Матричный способ задания системы линейных уравнений. Свойство параллельности и перпендикулярности прямых. Уравнения плоскости в пространстве.
Элементы линейной алгебры и ее следование из вычислительных задач. Матрица как математический объект, записываемый в виде прямоугольной таблицы элементов поля, представляющая совокупность строк и столбцов, на пересечении которых находятся её элементы.
Нахождение обратной матрицы. Решение квадратных систем линейных алгебраических уравнений матричным методом и по правилу Крамера. Метод Жордановых исключений. Собственные векторы и собственные значения. Приведение квадратичной формы к каноническому виду.
Понятие линейной комбинации векторов. Выражение члена с номером через остальные слагаемые. Свойства линейнозависимой системы векторов. Геометрический смысл линейной зависимости, коллинеарности и компланарности. Выражение переменной через другие значения.
Ознакомление с линейным уравнением множественной регрессии. Определение и характеристика ошибки аппроксимации. Рассмотрение и анализ результатов сравнения коэффициентов частной и парной корреляции. Изучение уравнение степенной и линейной модели.
- 1799. Линейная оптимизация
Построение оптимального плана для задачи линейной оптимизации, с учетом всех ограничений многоугольника. Графическое выражение числового значения уравнения. Рассмотрение практического применения математического способа вычисления координат фигуры.
Определение зависимости одной физической величины от другой. Метод линейной парной регрессии как наилучший способ для воспроизведения искомой зависимости и решение задач по имеющимся экспериментальным точкам с помощью программного обеспечения Mathcad.